MapReduce入门WordCount

本文详细介绍了如何使用Hadoop实现WordCount算法,包括MapReduce的基本原理,Mapper与Reducer的具体实现步骤,以及如何通过Driver类将自定义的Map和Reduce任务部署到Hadoop集群上。
摘要由CSDN通过智能技术生成

原始数据:
zhangsan,lisi,wangwu
zhaoliu,maqi
zhangsan,zhaoliu,wangwu
lisi,wangwu

期望的结果:
zhangsan 2
lisi 2
wangwu 3
zhaoliu 2
maqi 1

偏移量:
每个字符移动到当前文档的最前边需要移动的字符个数

hadoop数据类型:(一一对应)
java:int,double,float,boolean,string
hadoop : IntWritable LongWritable DoubleWritable FloatWritable BooleanWritable Text

WordCount-Map实现:
1、实例一个class 继承Mapper<输入的key的数据类型,输入的value的数据类型,输出的key的数据类型,输出的
value的数据类型,>
2、重写map方法 map(LongWritable key, Text value, Context context)
key: 行首字母的偏移量
value: 一行数据
context:上下文对象
3、根据业务需求进行切分,然后逐一输出

WordCount-Reduce实现
1、实例一个class 继承Reducer<输入的key的数据类型,输入的value的数据类型,输出的key的数据类型,输出的
value的数据类型,>
2、重写reduce方法 reduce(Text key, Iterable values, Context context)
key: 去重后单词
values: 标记的1(好多个1,key出现几次就有几个1)
context:上下文对象
3、遍历values 进行汇总计算
WordCount-Driver实现
1、实例一个class 继承Configured 实现Tool
2、重写run方法
3、在run方法中将自己编写的map和reduce添加到集群
//1、实例一个Job
Job job=Job.getInstance(new Configuration(),“WordCount12”);
//2、 设置读取数据的class
job.setInputFormatClass(TextInputFormat.class);4、在main方法中调用执行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值