在上一篇博文讲了elasticsearch以及插件elasticsearch-head的安装,本期开始学习Kibana。
先来了解下ELK。ELK是Elasticsearch、Logstash、Kibana三大开源框架首字母大写简称,市面上也称为Elastic Stack。其中Elasticsearch是一个基于Lucene、分布式、通过Restful方式进行交互的近实时搜索平台框架,相类似百度、谷歌这种大数据全文搜索引擎的场景都可以使用Elasticsearch作为底层支持框架,可见Elasticsearch提供的搜索能力确实强大。logstash是ELK的中央数据流引擎,用于从不同的目标(文件/数据存储/消息队列)收集不同格式的数据,经过过滤后支持输出到不同目的地(文件/消息队列/redis/elasticsearch/kafka等)。Kibana可以将elasticsearch的数据通过友好的页面展示出来,提供实时分析的功能。所以可分为3步:
收集、清洗数据→搜索、存储、分析(通过es)→Kibana可视化。以网络日志分析为例,流程如下:
在市面上,很多开发只要提到ELK能够一直说出它是一个日志分析架构技术栈总称,但实际上ELK不仅适用于日志分析,它还可以支持其它任何数据分析和收集的场景,日志分析和收集相对更具有代表性,并非唯一性。
Kibana是一个针对Elasticsearch的开源分析及可视化平台,用来搜索、查看交互存储在Elasticsearch索引中的数据。使用Kibana,可以通过各种图表进行高级数据分析及展示。Kibana让海量数据更容易理解。它操作简单,基于浏览器的用户界面可以快速创建仪表板实时显示Elasticsearch查询动态。设置Kibana非常简单。无需编码或者额外的基础架构,几分钟内就可以完成Kibana安装并启动Elasticsearch索引监测。Kibana的下载安装与启动与Elasticsearch相似,下载完解压即可用。下载地址,注意下载版本和Elasticsearch版本相对应。
启动测试,进入Kibana目录,如图:
进入bin目录下,双击kibana.bat程序即可完成启动。
访问5601端口。
所有的代码都在“开发工具”中写。
如果英文看不懂,还可以汉化,修改kibana.yml即可。
可以看到有两个与语言配置相关的json文件。
接下来,返回kibana主目录,进入config目录:
拉到最后,添加“il8n.locale: "zh-CN"”即可。
然后,重启就可以了。
下一期学习ES的核心内容,与传统数据库的联系。