Jmeter聚合报告分析

JMeter聚合报告(Aggregate Report)是性能测试中常用的工具,用于汇总和分析测试结果。它提供了多种关键指标,帮助测试人员理解系统在负载下的表现。以下是一些常见的指标及其解释:

  1. Label(标签):表示每个请求的名称或标签。可以是HTTP请求、JDBC请求等。

  2. # Samples(样本数):表示每个请求的执行次数。这是测试中收集到的样本总数。

  3. Average(平均值):每个请求的平均响应时间。单位通常是毫秒(ms)。这是所有样本响应时间的平均值。

  4. Median(中位数):中位数响应时间,即50%的请求响应时间小于这个值,50%的请求响应时间大于这个值。中位数比平均值更能反映典型响应时间,因为它不受极端值的影响。

  5. 90% Line(90%线):90%的请求响应时间小于这个值,10%的请求响应时间大于这个值。这个指标帮助识别长尾效应和响应时间分布。

  6. Min(最小值):最小响应时间,即所有样本中最快的响应时间。

  7. Max(最大值):最大响应时间,即所有样本中最慢的响应时间。

  8. Error %(错误百分比):请求失败的百分比。这个指标显示了多少请求在测试过程中失败。

  9. Throughput(吞吐量):每分钟处理的请求数。这个指标反映了系统的处理能力。

  10. Received KB/sec(每秒接收的KB):每秒钟从服务器接收到的数据量。这个指标显示了网络流量的输入。

  11. Sent KB/sec(每秒发送的KB):每秒钟发送到服务器的数据量。这个指标显示了网络流量的输出。

分析方法

  1. 识别瓶颈:通过查看平均响应时间、90%线和最大响应时间,可以识别出系统在高负载下的瓶颈。

  2. 错误分析:高错误百分比可能表明系统在某些情况下无法处理请求,需进一步调查错误原因。

  3. 吞吐量和响应时间关系:通常,随着负载增加,吞吐量会增加,但在达到系统极限后,响应时间会显著增加。

  4. 比较不同场景:通过比较不同测试场景的聚合报告,可以评估不同配置或优化措施的效果。

  5. 监控趋势:在连续的测试中,监控这些指标的变化趋势,可以帮助识别系统性能的退化或改进。

示例

假设你有以下聚合报告数据:

Label# SamplesAverage (ms)Median (ms)90% Line (ms)Min (ms)Max (ms)Error %Throughput (req/min)Received KB/secSent KB/sec
Login100050045080010015001%2005010
Search10003002506005012002%2506015
Checkout1000800750120020020005%1507020
  • Login请求的平均响应时间为500ms,90%的请求响应时间小于800ms,错误率为1%,吞吐量为200 req/min。
  • Search请求的平均响应时间为300ms,90%的请求响应时间小于600ms,错误率为2%,吞吐量为250 req/min。
  • Checkout请求的平均响应时间为800ms,90%的请求响应时间小于1200ms,错误率为5%,吞吐量为150 req/min。

通过这些数据,你可以看到Checkout请求是最慢的,并且有较高的错误率,可能需要进一步优化。

通过对JMeter聚合报告的分析,可以深入了解系统在不同负载条件下的表现,并找到潜在的性能瓶颈和优化机会。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南测先锋bug卫士

你的鼓励是我们最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值