人工智能作业 - A*算法程序求解八数码

本文详细介绍了A*算法在解决八数码问题中的应用。内容包括A*算法的简介、思路、伪代码,以及八数码问题的题目描述和注意事项。在实验过程中,通过二维数组压缩为一维来简化问题,利用逆序数判断是否有解,并对比了h1(错位数字数目)和h2(曼哈顿距离)两种启发函数在不同初始状态下的表现。

A*算法

简介

A*搜寻算法俗称A星算法。A*算法是比较流行的启发式搜索算法之一,被广泛应用于路径优化领域。它的独特之处是检查最短路径中每个可能的节点时引入了全局信息,对当前节点距终点的距离做出估计,并作为评价该节点处于最短路线上的可能性的量度。

思路

A*算法通过函数 f(n) = g(n)+h(n) 来计算每个节点的优先级。
f(n)是节点n的综合优先级。
g(n) 是节点n距离起点的代价。
h(n)是节点n距离终点的预计代价,这也就是A算法的启发函数。关于启发函数我们在下面详细讲解。
A
算法在运算过程中,每次从优先队列中选取f(n)值最小(优先级最高)的节点作为下一个待遍历的节点。另外,A*算法使用两个集合来表示待遍历的节点open_set,与已经遍历过的节点close_set。

A*伪代码

初始化open_set和close_set;
将起点加入open_set中,并设置优先级为0(优先级最高);
如果open_set不为空,则从open_set中选取优先级最高的节点n:
    如果节点n为终点,则:
        从终点开始逐步追踪parent节点,一直达到起点;
        返回找到的结果路径,算法结束;
    如果节点n不是终点,则:
        将节点n从open_set中删除,并加入close_set中;
        遍历节点n所有的邻近节点:
            如果邻近节点m在close_set中,则:
                跳过,选取下一个邻近节点
            如果邻近节点m也不在open_set中,则:
                设置节点m的parent为节点n
                计算节点m的优先级
                将节点m加入open_set中

八数码问题

题目描述

➢在一个3×3的九宫中有1-8这8个数字以及一个空格随机摆放在其中的格子里。将该九宫格调整到目标状态。
➢规则:每次只能将与空格(上、下、左、右)相邻的一个数字移动到空格中。试编程实现这一问题的求解。
➢备注:为了程序中表示方便,用0代替空格。
➢初始状态和目标状态:均由用户通过键盘手工输入或者从文件读入(不可以写死在程序里面)。
➢实验结果需要包含以下初始状态和目标状态的结果(check your answer:至少需要移动15步)。
在这里插入图片描述

注意事项

➢每个节点n需要记录父节点信息以及g(n)的值(已走过的步数)。
➢从当前状态到目标状态的代价估计h(n)可以从下面选一个(或者自拟)
h1(n):与目标相比, 错位的数字数目;
h2(n):曼哈顿距离总和( D(i,j)=|X1-X2|+|Y1-Y2| );
若是能对两种代价函数进行实验比较(同一初始状态下,两种代价函数导致的搜索步数的差异,需对多个初始状态进行实验),则更好。
➢每个状态的子状态最多四个(上、下、左、右移动),但要根据空格所处的实际位置确定当前状态具体有哪几个子状态。

实验过程

解决思路

伪代码

输入数据

先检查是否一定有解。

直接A*算法求解。

输出结果

二维压缩为一维

需要注意的是,要把二维数组直接推平记录到字符串中,这样一来容易检查是否有解,而且更方便用open_set和close_set记录状态。
这样的话0号在二维数组中上下左右移动 就转换为 字符串中 与往前第三个字符互换位置,往0后第三个字符互换位置,相邻的互换位置
在这里插入图片描述

检查是否有解

若两个状态的逆序数奇偶性相同,则可相互到达,否则不可相互到达。
逆序数概念:

在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。也就是说,对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个 不同的自然数,可规定从小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的实际先后次序与标准次序不同时,就说有1个逆序。一个排列中所有逆序总数叫做这个排列的逆序数。

其他

set的使用
set里面会自动排序(从小到大)。重载结构体的小于号后,直接获取set第一个值就是当下优先级最高的。
记录路径的方法
没想到比较好的记录路径的方法,索性直接把路径存在每个状态结构体中。0上,1下,2左,3右

代码实现

#include<iostream>
#include<string>
#include<set>
#include<stack>
#include<map>
using namespace std; 
bool check(string tem) {
   
   
	//目标状态的逆序数是0,所以如果该状态的逆序对是奇数,无解,返回1;
	string  s = "";
	int cnt = 0;
	for (auto i : tem) {
   
   
		if (i != '0')
			s += i;
	} 
	int len = s.size();
	for (int i = 1; i < len; i++) {
   
   
		for (int j = 0; j < i; j++) {
   
   
			if (s[i] < s
include using namespace std; struct node{ int nodesun[4][4]; int pre; //上一步在队列中的位置 int flag ; //步数标识,表示当前的步数为有效的 int value; //与目标的差距 int x,y; //空格坐标 }queue[1000]; //移动方向数组 int zx[4]={-1,0,1,0}; int zy[4]={0,-1,0,1}; //当前步数 int top; int desti[4][4];//目标状态 int detect(struct node *p)//检查是否找到 {int i,j; for(i=1;i<4;i++) for(j=1;jnodesun[i][j]!=desti[i][j]) return 0; return 1; } //打印 void printlj() {int tempt; int i,j; tempt=top; while(tempt!=0) { for(i=1;i<4;i++) for(j=1;j<4;j++) {cout<<queue[tempt].nodesun[i][j]; if(j==3) cout<<" "<<endl; } tempt=queue[tempt].pre; } } //现在状态与目标状态有多少个不同位置 int VALUE(struct node *p) {int count=0; int i,j; for(i=1;i<4;i++) for(j=1;jnodesun[i][j]!=desti[i][j]) count++; return count; } void main() { //初始化 int i,j,m,n,f; int min=10; int temp,find=0,minnumber; top=1; for(i=1;i<4;i++) for(j=1;j<4;j++) {cout<<"请输入第"<<i<<"行"<<"第"<<j<<"列的值"<>temp; queue[1].nodesun[i][j]=temp; } cout<<"请输入初始状态的空格的位置(行)"<>temp; queue[1].x=temp; cout<<"请输入初始状态的空格的位置(列)"<>temp; queue[1].y=temp; queue[1].value=VALUE(&queue[1]); queue[1].pre=0; //上一步在队列中的位置 queue[1].flag=0; //目标状态 for(i=1;i<4;i++) for(j=1;j<4;j++) {cout<<"请输入目标状态第"<<i<<"行"<<"第"<<j<<"列的值"<>temp; desti[i][j]=temp; } //根据估价函数 while(!find&&top>0) { for(i=1;i<=top;i++) //////////////////////////////////////////// //min为上一图中与目标图有多少个元素不相同,queue[i]为当前图与目标图有多少个元素不相同通过这两个数的比较,就可以得出当前图较之上一图向目标图接近同时把当前的i记录下来进行下一步比较 {if(queue[i].value<min&&queue[i].flag==0) {minnumber=i;// min=queue[i].value; //还有多少不同的位数 } } queue[minnumber].flag=1; //表示此位有效 ////////////////////////////////////// // for(f=0;f=1&&i=1&&j<=3) {top++; ///////////////////////////////////////////// //位置交换 queue[top]=queue[minnumber]; queue[top].nodesun[m][n]=queue[minnumber].nodesun[i][j]; queue[top].nodesun[i][j]=0; /////////////////////////////////////// //空格移动方向 queue[top].x=i; queue[top].y=j; /////////////////////////////////////// queue[top].pre=minnumber; //上一步在队列中的位置 queue[top].value=VALUE(&queue[top]); //有多少位与目标不同 queue[top].flag=0; //标识位初始化 if(detect(&queue[top])) //检查是否为目标 {printlj(); //打印 find=1; //设找到标识位 break; } } } } }
A*算法求解八数码问题 1、A*算法基本思想: 1)建立一个队列,计算初始结点的估价函数f,并将初始结点入队,设置队列头和尾指针。 2)取出队列头(队列头指针所指)的结点,如果该结点是目标结点,则输出路径,程序结束。否则对结点进行扩展。 3)检查扩展出的新结点是否与队列中的结点重复,若与不能再扩展的结点重复(位于队列头指针之前),则将它抛弃;若新结点与待扩展的结点重复(位于队列头指针之后),则比较两个结点的估价函数中g的大小,保留较小g值的结点。跳至第五步。 4)如果扩展出的新结点与队列中的结点不重复,则按照它的估价函数f大小将它插入队列中的头结点后待扩展结点的适当位置,使它们按从小到大的顺序排列,最后更新队列尾指针。 5)如果队列头的结点还可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步。 2、程序运行基本环境: 源程序所使用编程语言:C# 编译环境:VS2010,.net framework 4.0 运行环境:.net framework 4.0 3、程序运行界面 可使用程序中的test来随机生成源状态与目标状态 此停顿过程中按Enter即可使程序开始运行W(n)部分; 此停顿部分按Enter后程序退出; 4、无解问题运行情况 这里源程序中是先计算源状态与目标状态的逆序对的奇偶性是否一致来判断是否有解的。下面是无解时的运行画面: 输入无解的一组源状态到目标状态,例如: 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 8 7 0 运行画面如下: 5、性能比较 对于任一给定可解初始状态,状态空间有9!/2=181440个状态;当采用不在位棋子数作为启发函数时,深度超过20时,算法求解速度较慢; 其中启发函数P(n)与W(n)的含义如下: P(n): 任意节点与目标结点之间的距离; W(n): 不在位的将牌数; 源状态 目标状态 P(n) 生成节点数 W(n) 生成节点数 P(n) 扩展节点数 W(n) 扩展节点数 2 8 3 1 6 4 7 0 5 1 2 3 8 0 4 7 6 5 11 13 5 6 1 2 3 8 0 4 7 6 5 0 1 3 8 2 4 7 6 5 6 6 2 2 4 8 2 5 1 6 7 0 3 7 4 2 8 5 6 1 3 0 41 79 22 46 6 2 5 8 7 0 3 1 4 0 3 6 7 1 8 4 5 2 359 10530 220 6769 7 6 3 1 0 4 8 5 2 2 8 7 1 3 4 6 5 0 486 8138 312 5295 下图是解决随机生成的100中状态中,P(n)生成函数的生成节点与扩展节点统计图: 由上图可知,P(n)作为启发函数,平均生成节点数大约在1000左右,平均扩展节点数大约在600左右; 下图是解决随机生成的100中状态中,W(n)生成函数的生成节点与扩展节点统计图: 由上图可知,W (n)作为启发函数,平均生成节点数大约在15000左右,是P(n)作为启发函数时的平均生成节点的15倍;W (n)作为启发函数,平均扩展节点数大约在10000左右,是P(n)作为启发函数时的平均扩展节点的15倍; 下图是解决随机生成的100中状态中,两个生成函数的生成节点与扩展节点统计图: 由上述图表可以看到,将P(n)作为启发函数比将W(n)作为启发函数时,生成节点数与扩展节点数更稳定,相比较来说,采用P(n)作为启发函数的性能比采用W(n)作为启发函数的性能好。 6、源代码说明 1)AStar-EightDigital-Statistics文件夹:用来随机生成100个状态,并对这100个状态分别用P(n)与W(n)分别作为启发函数算出生成节点以及扩展节点,以供生成图表使用;运行界面如下: 2)Test文件夹:将0-8这9个数字随机排序,用来随机生成源状态以及目标状态的;运行界面如下: 3)AStar-EightDigital文件夹:输入源状态和目标状态,程序搜索出P(n)与W(n)分别作为启发函数时的生成节点数以及扩展节点数,并给出从源状态到目标状态的移动步骤;运行界面如下: 提高了运行速度的几处编码思想: 1、 在维护open以及close列表的同时,也维护一个类型为hashtable的open以及close列表,主要用来提高判断当前节点是否在open列表以及close列表中出现时的性能; 2、 对于每个状态,按照从左到右,从上到下,依次将数字拼接起来,形成一个唯一标识identify,通过该标识,可以直接判断两个状态是否是同一个状态,而不需要循环判断每个位置上的数字是否相等 3、 在生成每个状态的唯一标识identify时,同时计算了该状态的空格所在位置,通过空格所在位置,可以直接判断能否进行上移、下移、左移、右移等动作; 4、 只计算初始节点的h值,其它生成的节点的h值是根据当前状态的h值、移动的操作等计算后得出的,规则如下: a) 采用W(n)这种方式,不在位置的将牌数,共有以下3中情况: i. 该数字原不在最终位置上,移动后,在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值-1 ii. 该数字原在最终位置上,移动后,不在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值 +1 iii. 该数字原不在最终位置上,移动后,还是不在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值 iv. 该数字原在最终位置上,移动后,还在其最终位置 这种情况不存在 b) 采用P(n)这种方式,节点与目标距离,可通过下面3步完成 i. 首先计算在原位置时,与目标位置的距离,命名为Distance1 ii. 移动后,计算当前位置与目标位置的距离,命名为Distance2 iii. 计算子节点的h值: 子节点的h值 = 父节点的h值- Distance1+ Distance2 5、 在任意状态中的每个数字和目标状态中同一数字的相对距离就有9*9种,可以先将这些相对距离算出来,用一个矩阵存储,这样只要知道两个状态中同一个数字的位置,就可查出它们的相对距离,也就是该数字的偏移距离;例如在一个状态中,数字8的位置是3,在另一状态中位置是7,那么从矩阵的3行7列可找到2,它就是8在两个状态中的偏移距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洛阳八中我最棒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值