自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(189)
  • 资源 (1)
  • 收藏
  • 关注

原创 智能医疗 | 算法稳定性在医疗设备中的重要性

在医疗影像设备(如MRI、CT)中,算法稳定性比性能指标更重要。稳定性包含数值计算稳定性、输入扰动鲁棒性、边界条件可控性等多维度要求。医疗设备要求算法结果可解释、可复现,对噪声、参数变化和异常数据具有稳定响应。工程实践中常采用可退化设计、明确波动范围、异常检测等策略确保稳定性。与科研算法追求先进性不同,医疗算法更强调在真实临床环境中的稳定表现,这是医疗设备算法工程师的核心职业要求。

2026-02-09 17:27:12 31

原创 智能医疗 | 从 Python 原型到 C++ 量产:一次医学图像算法迁移记录

本文记录了医学图像算法从Python迁移到C++的实践过程。针对医疗器械开发中Python在实时性、部署和合规性方面的不足,团队采用模块级重设计策略,重点解决数据结构转换、OpenCV行为差异和内存管理等典型问题。通过优化内存操作和减少Mat构造,最终单帧处理时间从90ms降至25ms,并实现内存稳定控制。文章强调医疗算法工程需在性能与可维护性间权衡,建议开发者完整经历从原型到量产的迁移过程,以掌握将算法真正部署到医疗设备的关键能力。这一经验对医疗图像处理领域的工程实践具有重要参考价值。

2026-02-09 16:55:35 152

原创 智能医疗 | BUFNet:让脑肿瘤 MRI 分割更可靠的一次重要突破,一文看懂“边界感知 + 不确定性驱动”的多模态融合网络

本文提出BUFNet网络解决脑肿瘤MRI分割的两大难题:边界模糊和不确定性评估。通过边界感知模块(BAM)增强边缘识别,多模态融合模块(MMF)优化信息整合,以及不确定性量化(UQ)提供预测可靠性评估。实验表明,BUFNet在BraTS数据集上DSC达84.4%,HD为3.7mm,优于现有方法。该研究体现了医学AI向精细化、可靠性发展的趋势,为临床提供更可信的分割结果和不确定性评估,具有重要应用价值。

2025-12-12 14:38:09 103

原创 医疗影像分割 | 使用MedSAM训练自己的医学图像分割数据集

摘要 本文详细介绍了使用MedSAM模型训练自定义医学图像数据集的完整流程。主要内容包括:代码下载与环境配置(创建虚拟环境、安装依赖、验证CUDA)、数据集准备(目录结构、格式要求、命名规范及检查工具)、预训练模型下载(不同模型选择建议),以及训练脚本修改(解决文件名匹配、Windows系统NCCL支持、单GPU训练等常见问题)。通过逐步指导,帮助用户快速搭建MedSAM训练环境并适配自己的医学图像数据,实现高效的分割模型训练。

2025-12-10 18:30:01 262

原创 MedSAM:通向“医疗图像任意分割”的第一座桥梁

首个医学图像通用分割基础模型MedSAM。针对医学图像低对比、边界模糊等特性,该模型基于157万张多模态医学图像训练,在146个测试任务中展现出超越SAM和传统模型的性能。MedSAM采用promptable机制,通过边界框提示实现精准分割,将3D肿瘤标注时间减少82%。实验表明,该模型在10类医学模态和30多种癌症类型上具有优异的跨模态泛化能力,为构建医疗AI基础模型提供了重要范式。研究同时指出当前模型对树状结构分割和3D全自动处理的局限性,为未来医疗大模型发展指明方向。

2025-12-10 15:55:59 59

原创 3 个值得收藏的 GitHub 开源项目,让你的 Claude Code 更强大、更专业

本文推荐了3个提升ClaudeCode使用体验的开源工具:1. ClaudeCodeUsageMonitor - 实时监控token用量,提供可视化仪表盘和用量预测;2. Claude-Flow - 多智能体协作平台,支持64个专业AI角色协同工作;3. ClaudeCodeChat - VSCode插件,提供直观的聊天界面和会话管理功能。这些工具分别解决了用量监控、多AI协作和开发集成等核心问题,能显著提升开发效率。

2025-12-05 10:10:19 87

原创 【AAAI 2025】Affirm:把 Mamba 与自适应傅里叶过滤器结合,重塑时间序列预测的未来——以及它在医疗影像分析中的巨大潜力

本文介绍了一种新型时间序列预测模型Affirm,它结合了Mamba(状态空间模型)和自适应傅里叶滤波器技术,有效解决了传统方法在复杂度、噪声敏感性和长周期建模方面的局限性。Affirm通过频域增强降噪模块和多尺度Mamba交互结构,实现了线性复杂度的高效预测。实验表明该模型在精度和计算效率上均优于现有方法,特别适合噪声数据场景。文章还探讨了Affirm在医学影像领域的迁移应用潜力,包括图像降噪、多尺度建模和医疗多模态预测等方向。

2025-12-05 09:44:04 302

原创 【CVPR2025】多模态视觉预训练在医学影像分析中的前沿突破——解读BrainMVP

《BrainMVP:医学影像多模态视觉预训练新方法》提出了一种创新性的多模态自监督学习框架,突破传统单模态限制。该方法整合跨模态重建、模态蒸馏和模态感知对比学习三大策略,利用大规模脑部MRI数据(16,022个扫描)进行预训练。实验表明,在10个下游任务中,BrainMVP显著提升分割(Dice提升0.28%-14.47%)和分类(准确率提升0.65%-18.07%)性能,并能用40%标注数据达到全标注效果。该框架不仅适用于脑部影像,还可推广至胸部CT/X光等其他多模态医学影像分析,为降低标注成本、提升临床

2025-12-03 15:56:44 326

原创 ICME 投稿经验分享(CCF-B)

本文提供ICME 2025会议投稿全流程指南,包含6大关键环节:1)会前需确认官网信息并选择匹配的Track/Special Session;2)稿件须严格遵循Letter尺寸PDF格式,推荐使用LaTeX模板;3)特别注意双盲评审要求,违规将直接拒稿;4)CMT系统投稿需准备完整材料,注意手动获取投稿确认;5)新增rebuttal环节需专业应对审稿意见;6)录用后需完成注册、版权提交等流程。

2025-12-03 14:09:50 1193

原创 软件著作权 | 软著官网自动提交脚本,python实现

该脚本实现了软件著作权登记的自动化提交功能,通过Selenium模拟浏览器操作,每分钟可提交200次请求。主要功能包括自动点击"确认提交"按钮、处理弹窗确认,并提供提交状态检测。脚本采用多种定位策略确保操作可靠性,支持用户手动停止,最后会输出提交统计信息。使用前需30秒时间完成登录和表单填写,适合需要快速批量提交的场景。

2025-12-01 11:31:33 170

原创 智能医疗 | 同时实现“三模态融合 + 超分辨率”的扩散模型 TFS-Diff

本文介绍了一种基于条件扩散模型的TFS-Diff方法,首次实现三模态医学图像(如MR-T1、MR-T2、SPECT)的同步融合与超分辨率重建。该方法通过创新的三模态特征融合注意力模块(TMFA)和专门设计的PSF联合损失函数,有效解决了传统方法流程复杂、误差累积的问题。实验表明,TFS-Diff在多种放大倍数下均优于现有方法,显著提升了图像质量和诊断价值。该方法为多模态医学图像处理提供了新的解决方案,未来可结合大语言模型进一步发展为智能医学影像助手。

2025-11-25 10:20:42 196

原创 医疗影像分割 | 使用RLS_PSDF分割分割自己的数据集

本研究提出了一种基于概率符号距离函数(pSDF)的光学相干断层扫描(OCT)视网膜层分割方法RLS-PSD,能够有效处理分割中的不确定性。通过将传统边界分割转化为距离场学习,该方法实现了对多层视网膜结构的精确建模。配套工具支持将掩码数据转换为SDF格式,包含边界提取、SDF生成和可视化功能,适用于单层/多层视网膜分割任务。实验表明,该方法在保持分割精度的同时,能定量评估分割结果的不确定性,为临床诊断提供更可靠的支持。

2025-11-25 10:07:45 41

原创 从边界到距离:RLS-PSD 用概率符号距离函数重新定义层分割

本文提出RLS-PSD方法,将医学图像层分割任务重新定义为几何-概率建模问题。针对传统分割方法在多层边界检测中的局限性,该方法通过预测概率符号距离函数(PSD),同时建模像素到边界的连续距离和不确定性。核心创新包括:1)使用SDF代替二值掩码表示边界;2)引入概率建模,将距离预测表示为高斯分布;3)提出基于负对数似然的损失函数。实验表明,该方法在角膜OCT等数据集上显著降低了边界定位误差,并能够可靠地识别不确定区域。

2025-11-07 10:38:25 66

原创 让医学影像跨越“域”的鸿沟:FAMNet 的频域觉知匹配新思路

【摘要】本文提出FAMNet框架,针对跨域少样本医学图像分割(CD-FSMIS)问题,创新性地从频域角度解决不同模态影像间的泛化难题。通过快速傅里叶变换分析发现CT与MRI等不同成像技术在中频段存在结构相似性,据此设计三大核心模块:粗分割生成、频域感知匹配和多谱融合。实验表明,FAMNet在CT-MRI转换等跨域任务中Dice系数提升2.78%-10.14%,显著优于现有方法。

2025-11-06 15:04:25 88

原创 YOLOv12:让注意力机制真正飞起来的实时目标检测框架

YOLOv12提出了一种创新的注意力机制实时目标检测框架,通过区域注意力(AreaAttention)和残差高效层聚合网络(R-ELAN)等创新设计,在保持YOLO系列实时性的同时显著提升检测精度。该模型在MSCOCO数据集上全面超越前代YOLO版本,N/S/M/L/X五个版本分别提升2.1%、1.1%、1.0%、0.4%和0.6%的mAP。YOLOv12首次成功将Transformer的全局建模能力引入实时检测领域,通过FlashAttention优化和结构简化,实现了接近CNN的速度。

2025-11-03 19:09:20 997

原创 Wan2.2-Animate 图片转视频!完美角色一致性,动画替换模型,本地部署教程

Qwen团队发布Wan2.2-Animate-14B模型,支持角色动画和表情复制。现已开源模型权重和推理代码,用户可通过Git克隆仓库后,创建Python环境并安装依赖项运行。试用地址包括wan.video、ModelScopeStudio和HuggingFaceSpace,本地安装后访问127.0.0.1:7860即可使用。

2025-10-31 13:58:07 1192

原创 医学影像分割 | 用于结直肠息肉分割的边界引导特征对齐网络

本文提出了一种用于结直肠息肉分割的边界引导特征对齐网络(BFNet),通过两个创新模块提升分割精度:FFA模块采用可变形卷积实现跨层特征自适应对齐,解决空间错位问题;BFE模块基于双分支注意力机制增强边界特征。实验表明,BFNet在多个公开数据集上表现优异,在Kvasir-SEG数据集上Dice系数达0.933,尤其对模糊边界和小息肉分割效果显著提升。虽然对特殊干扰情况仍存在局限,但该方法为自动化息肉检测提供了有效解决方案。

2025-10-16 10:21:49 101

原创 突破医学影像分割瓶颈:基于Kolmogorov–Arnold网络的半监督MRI心脏分割新框架

本文提出了一种基于Kolmogorov-Arnold网络(KAN)的半监督学习框架KS-Net,用于MRI心脏分割。针对现有方法存在的非线性建模不足和扰动空间有限问题,KS-Net创新性地结合KAN模块捕捉高阶特征,并采用双流强扰动策略提升数据利用效率。在MyoPS2020和ACDC数据集上的实验表明,KS-Net在Dice系数等指标上优于现有方法,特别是在复杂心脏结构分割上表现突出。该研究为减少医学数据标注负担、提升分割精度提供了有效解决方案,具有重要临床应用价值。

2025-09-17 11:20:32 126

原创 Semi-KAN:一种用于医学图像分割的半监督学习新框架

《Semi-KAN:一种基于KAN的半监督医学图像分割新方法》提出将Kolmogorov-Arnold Networks(KANs)引入医学图像分割,解决标注数据稀缺问题。该方法创新性地结合CNN的局部特征提取与KAN的高层语义表征能力,采用多解码器架构和不确定性估计策略,在仅5%-10%标注数据下达到接近全监督模型的性能。实验表明,在多个公开数据集上Semi-KAN显著优于现有方法,如GlaS数据集使用10%标注时Dice系数提升4.66%。该研究不仅提升了小样本下的分割精度,还增强了模型可解释性。

2025-09-16 11:19:36 120

原创 医疗影像分割 | 使用nnUnet v2训练自己的数据集-3D分割

本文介绍了nnUNet框架在医学图像分割中的应用流程。首先通过GitHub获取代码并配置Python 3.10环境。数据准备阶段需创建特定目录结构,使用脚本自动重命名NIfTI格式文件并生成dataset.json元数据文件。预处理包括裁剪、重采样和标准化,通过nnUNetv2_plan_and_preprocess命令实现。训练支持2D/3D U-Net及级联结构,采用5折交叉验证,建议200-500个epoch。最后给出了3D全分辨率U-Net训练命令示例。

2025-09-08 16:37:49 450

原创 调用AI模型的API实现AI问答软件的制作「腾讯元宝篇-DeepSeek满血版」

YuanBao-Free-API是一个开源项目,提供OpenAI兼容接口访问腾讯元宝大模型(包括deepseek、hunyuan等系列)。该项目包含服务端和客户端组件,支持流式输出和网络搜索功能,可通过本地部署或Docker运行。使用需从腾讯元宝网站获取hy_user、hy_token等认证参数,并注意token时效性问题。文档详细说明了安装步骤(需注意Pydantic版本兼容问题)和使用方法,包括通过OpenAI SDK调用的示例代码。目前支持8种腾讯大模型,适用于学习和研究用途,需遵守腾讯使用条款。项目

2025-09-02 14:47:11 1689

原创 Mamba-HoME:面向3D医学影像分割的层次化专家混合新框架

Mamba-HoME提出了一种新型三维医学影像分割框架,结合层次化软专家混合机制和Mamba架构。该模型通过动态选择专家网络实现高效的多尺度特征提取,在CT/MRI/超声等多模态数据上表现出色。实验显示其不仅分割精度优于主流方法,还显著降低计算成本。这一突破为临床诊断、手术规划等应用提供了更高效的AI解决方案,展现了专家混合机制在医疗AI领域的潜力。

2025-08-26 14:49:45 343

原创 IEEE Journal of Biomedical and Health Informatics(JBHI)投稿经验分享

《IEEE Journal of Biomedical and Health Informatics投稿经验分享》详细记录了在影响因子6.7的中科院一区期刊JBHI的投稿历程(2025.1-5月,历时4个月)。文章重点分析:1)审稿特色:4位审稿人差异显著,领域专家意见专业但要求严苛;2)修改要点:需重视大修(补充实验/原理阐述),并注意将回复内容同步至正文;3)期刊特点:送审率高但审稿严格,常规投稿周期约4-5个月;4)实用建议:建议首次大修全力以赴,善用AI工具辅助写作,避免拖延。

2025-08-12 09:37:56 3413

原创 CVPR 2025 | DyCON:以不确定性为导向的半监督医学图像分割新突破

摘要:Khalifa University团队提出DyCON框架,通过动态不确定性感知机制解决半监督医学图像分割中的类不平衡和病灶不确定性问题。该框架整合UnCL(全局熵加权一致性损失)和FeCL(局部焦点对比损失),在ISLES'22等四个数据集上表现优异,仅用10%标签时Dice分数达65.71%,领先现有方法7%。DyCON具有动态熵加权、类不平衡处理等创新点,可直接集成主流网络架构,为医疗AI开发者提供高效分割方案。论文已发表于arXiv。

2025-08-07 14:20:00 665

原创 Information Fusion 2025 | 揭秘AHF-U-Net与其不确定性感知版本

医学图像分割研究《Attention-guided hierarchical fusion U-Net for uncertainty-driven medical image segmentation》提出创新模型AHF-U-Net及其不确定性感知版本UA-AHF-U-Net。该研究突破传统分割模型局限,通过编码器/解码器双侧注意力融合(EAF&DAF)、分层注意力增强跳跃连接(HAE)等技术提升分割精度,并引入SubjectiveLogic框架实现像素级不确定性量化。

2025-08-04 11:54:53 4659

原创 【故障记录】Windows 11 任务栏图标突然消失的解决办法

Windows11任务栏图标消失的解决方法:当任务栏和开始菜单无响应时,可通过重启资源管理器(Ctrl+Shift+Esc打开任务管理器重启)或手动运行explorer.exe解决。若无效,可用命令行强制终止并重启explorer进程,或运行sfc/scannow检查系统文件。建议按上述步骤依次尝试,多数情况可解决问题,避免重装系统。

2025-07-10 15:01:47 2935

原创 (Arxiv2025)用于多模态医学图像超分辨率的全局和局部Mamba网络

本文提出一种基于全局和局部Mamba网络的多模态医学图像超分辨率方法GLMamba。该方法通过双分支结构:全局Mamba分支捕获低分辨率图像的长期依赖关系,局部Mamba分支提取高分辨率参考图像的短程细节。创新性地引入可变形块、调制器和多模态特征融合模块,有效整合不同模态信息。此外,设计了对比边缘损失函数增强纹理细节。在BraTS2021和IXI数据集上的实验表明,该方法在PSNR、SSIM等指标上优于现有方法,并能提升下游分割任务性能。未来将探索3D空间信息利用和配准-超分辨率联合框架。

2025-07-04 11:33:49 430

原创 使用C#调用Python代码的几种方式详解

摘要:本文介绍了五种C#调用Python代码的实用方法:1) 进程调用(通过命令行交互,适合简单脚本);2) IronPython引擎(深度集成.NET,支持双向调用);3) Python.NET(原生CPython扩展,适合科学计算);4) REST API通信(微服务架构下的跨网络调用);5) 共享库调用(DLL方式,追求高性能)。每种方案均包含实现示例,并分析了适用场景、优缺点及优化技巧(如数据序列化、GIL管理)。关键选择因素包括性能需求、系统架构和部署环境,多语言协同可结合C#的工程化能力与Pyt

2025-06-23 17:57:26 725

原创 AAAI 2025 | 解决医学图像分割软边界与共现难题,对比度驱动医学图像分割的通用框架 ConDSeg

ConDSeg提出了一种新型医学图像分割框架,通过对比驱动特征增强解决边界模糊和特征共现问题。该框架采用两阶段训练策略:第一阶段利用一致性强化预训练编码器,提升其在光照/对比度变化下的鲁棒性;第二阶段整合语义解耦模块(SID)、对比特征聚合模块(CDFA)和尺寸感知解码器,通过解耦前景/背景特征并增强关键特征,实现精确分割。实验表明该方法在多种医学图像任务中达到SOTA性能,特别适用于处理软组织边界和密集病灶场景。代码已开源。

2025-05-30 14:13:24 403

原创 Python实现VTK-自学笔记(5):在三维世界里自由舞蹈——高级交互与动态可视化

本文介绍了使用Python和VTK库实现数据可视化进阶功能的实践。通过四个核心模块:1)时空交互模块实现3D螺旋线的滑块控制;2)点云编辑系统支持实时多边形选择;3)动态光影系统实现光源动画与Phong材质渲染;4)数据桥梁模块连接VTK与Matplotlib实现跨维度可视化。文章采用PyQt5作为GUI框架,展示了如何将静态数据转化为具有交互性的动态可视化作品,体现了"代码即诗"的技术美学理念。

2025-05-27 15:13:46 648

原创 多模态光学成像革命:OCT、荧光与共聚焦的跨尺度融合新范式

在生物医学成像领域,单一模态技术如光学相干断层扫描(OCT)、荧光显微成像(FMI)和共聚焦显微(CLSM)各有局限,难以全面解析生物组织。技术融合成为必然趋势,通过跨尺度配准、动态补偿算法和多模态造影剂等手段,实现从组织架构到分子分布的全维度解析。典型应用包括肿瘤微环境解析、眼科疾病诊断和神经科学研究,展示了多模态融合在提升诊断精度和科研深度方面的巨大潜力。未来发展方向包括智能硬件集成、实时融合系统和纳米探针革新,这些进步将进一步提升多模态成像技术的应用效率和效果。

2025-05-20 14:30:55 379

原创 Python实现VTK - 自学笔记(4):用Widgets实现三维交互控制

本文介绍了使用VTK(Visualization Toolkit)进行三维可视化的核心交互技术。首先,通过创建圆锥体数据源、映射器和演员,构建了基本的可视化场景。接着,利用vtkRenderWindowInteractor作为交互基础,支持多种交互风格。文章重点展示了如何通过滑块控件(vtkSliderWidget)动态调整圆锥体的分辨率,以及使用包围盒控件(vtkBoxWidget)实现物体的变形操作。这些控件通过回调机制(AddObserver)与事件处理函数绑定,实现动态数据更新。

2025-05-20 10:24:14 498

原创 Python实现VTK - 自学笔记(3):三维数据处理与高级可视化

本文基于Python-VTK工具包,系统探讨了三维数据处理与高级可视化技术。首先解析了VTK渲染管线的五层架构(数据源、过滤器、映射器、角色、渲染窗口),详细阐述了体绘制与表面渲染的实现差异。通过两个典型应用案例——有限元结果的可视化(节点位移场映射)和医学影像的体绘制(CT/MRI数据三维重建),展示了VTK在科学计算与医学图像领域的实用价值。文章提出光照优化、相机视角控制及动画交互等增强技巧,并介绍了VTK与ParaView的协同工作流(支持.vtk/.vtu格式导出)。

2025-05-19 10:23:48 415

原创 Python 实现 VTK - 自学笔记(2)

本文是"Python实现VTK"系列的第二篇,重点讲解三维可视化进阶技术及医学影像处理实战。通过对比原生VTK和PyVista,详细介绍了复杂几何建模、交互式控件开发、DICOM数据处理(包括多平面重建、体绘制和等值面提取)等核心内容,并提供了性能优化技巧和常见问题解决方案。文章包含完整代码示例,帮助开发者快速掌握医学影像分析、工程仿真等领域的三维可视化技术,实现从基础到实战的进阶。

2025-05-08 09:32:03 283

原创 Python 实现 VTK - 自学笔记(1)

VTK 官方提供了 Python 接口,可直接调用底层 C++ 库的功能。是 VTK 的高级 Python 封装,简化了代码编写,适合快速开发。

2025-04-23 15:22:52 365

原创 图像重建与后处理算法:从理论到临床的AI革命​

在医学影像领域,一张清晰的图像可能意味着早期肿瘤的发现、手术方案的精准制定,甚至生命的挽救。然而,受限于设备成本、辐射剂量或采集时间,原始数据往往存在噪声、伪影或分辨率不足的问题。​​,正是解决这些挑战的核心技术。本文将深入解析其原理、主流方法及前沿进展。

2025-04-08 15:09:46 827

原创 解码生命律动:探秘医用磁共振脉冲序列编程的艺术与科学​

从劳特伯恩1973年的第一幅MRI图像,到如今实时心脏电影成像,脉冲序列编程始终在物理定律与临床需求之间寻找诗意平衡。或许正如诺贝尔奖得主曼斯菲尔德所说:"每个优秀的序列设计都包含着对生命奥秘的敬畏之心。"当您下次看到MRI影像时,请记住那些在电磁波中起舞的编程智慧,正是它们让不可见的生命律动显影成诗。​​延伸阅读​《Handbook of MRI Pulse Sequences》学术经典ISMRM(国际医学磁共振学会)年度序列设计大赛获奖作品解析西门子Prisma 3T设备脉冲序列库技术白皮书。

2025-04-08 14:39:46 191

原创 医学图像处理开源库介绍:ITK、VTK 和 MITK

医学图像处理是医疗人工智能(AI)和计算机辅助诊断(CAD)领域的重要组成部分。开发医学影像分析应用时,使用成熟的开源库可以大幅降低开发成本,提高效率。在众多医学图像处理库中,ITK(Insight Toolkit)、VTK(Visualization Toolkit)和 MITK(Medical Imaging Interaction Toolkit) 是最常用的三大工具。本文将介绍它们的核心功能、适用场景以及使用示例,帮助开发者选择合适的工具。      

2025-03-03 14:42:25 1037

原创 医疗影像分割 | 使用 Swin UNETR 训练自己的数据集(3D医疗影像分割教程)

在Github上下载代码,然后进入SWINUNETR,选择第三个文件夹的内容进行操作,前两个是针对两个数据集(这些文件包含了数据集的路径和标签信息。示例 JSON 格式(例如。首先,写一个自己数据集的json文件,你需要为不同的数据集准备 JSON 文件(例如。点击这个link就可以下载了。现在一切准备就绪,开始训练!

2025-02-11 09:25:06 1615

原创 小波变换在OCT医学影像领域的应用

小波变换在OCT医学影像中的应用,不仅能提高图像的质量,还能够提取多尺度的特征,增强病变区域的可见性,进而帮助医生进行更准确的诊断。它在噪声去除、特征提取、边缘检测、图像融合和自动化分析等方面具有广泛的应用前景,能为OCT影像处理提供强大的支持。

2025-02-07 18:00:01 318

用Python语言制作一个迷宫游戏(包含BFS和DFS)

含深度搜索和广度搜索,Open表和Close表等,是一个关于迷宫游戏的报告

2021-10-29

使用Matlab2018a实现目标定位视频教学

视频教学内容为使用自己的数据集,目标是通过使用MATLAB R2018a中的trainingImageLabeler工具对照片进行标注,然后整理训练图像,并采用Faster-RCNN框架生成和测试一个网络模型。首先,使用trainingImageLabeler工具对照片进行标注,并保存标注结果为.mat格式的文件。然后,将图像大小更改为227×227,并按顺序保存。接下来,使用一个函数来提取图像中的人物,并将其调整为指定的大小。然后,设置网络参数并生成网络模型,其中使用了sgdm优化器和alexnet预训练模型。最后,使用训练好的模型对一张测试图像进行目标检测,并将检测结果可视化展示出来。该项目的主要步骤包括照片标注、图像整理、网络生成与测试。

2023-09-30

使用Matlab2018a实现目标定位

该项目使用自己的数据集,目标是通过使用MATLAB R2018a中的trainingImageLabeler工具对照片进行标注,然后整理训练图像,并采用Faster-RCNN框架生成和测试一个网络模型。首先,使用trainingImageLabeler工具对照片进行标注,并保存标注结果为.mat格式的文件。然后,将图像大小更改为227×227,并按顺序保存。接下来,使用一个函数来提取图像中的人物,并将其调整为指定的大小。然后,设置网络参数并生成网络模型,其中使用了sgdm优化器和alexnet预训练模型。最后,使用训练好的模型对一张测试图像进行目标检测,并将检测结果可视化展示出来。该项目的主要步骤包括照片标注、图像整理、网络生成与测试。

2023-09-30

自动抢微信红包 抢红包 哈哈哈哈哈

24小时全自动抢微信红包

2023-01-21

TimeSformer预训练好的模型,TimeSformer_divST_8x32_224_K400.pyth

TimeSformer:​Is Space-Time Attention All You Need for Video Understanding?​(video transformer) TimeSformer在K400上预训练好的的模型:8 of frames,spatial crop:224,acc@1:77.9,acc@5:93.2。

2022-09-08

TimeSformer预训练好的模型,TimeSformer_divST_16x16_448_K600.pyth

TimeSformer在K600上预训练好的的模型:16 of frames,spatial crop:448,acc@1:81.8,acc@5:95.8。 TimeSformer:​Is Space-Time Attention All You Need for Video Understanding?​(video transformer)

2022-09-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除