题目描述
实现一个双链表,双链表初始为空,支持 5 种操作:
在最左侧插入一个数;
在最右侧插入一个数;
将第 k 个插入的数删除;
在第 k 个插入的数左侧插入一个数;
在第 k 个插入的数右侧插入一个数
现在要对该链表进行 M 次操作,进行完所有操作后,从左到右输出整个链表。
注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。
输入格式
第一行包含整数 M,表示操作次数。
接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:
L x,表示在链表的最左端插入数 x。
R x,表示在链表的最右端插入数 x。
D k,表示将第 k 个插入的数删除。
IL k x,表示在第 k 个插入的数左侧插入一个数。
IR k x,表示在第 k 个插入的数右侧插入一个数。
输出格式
共一行,将整个链表从左到右输出。
数据范围
1≤M≤100000
所有操作保证合法。
输入样例:
10
R 7
D 1
L 3
IL 2 10
D 3
IL 2 7
L 8
R 9
IL 4 7
IR 2 2
输出样例:
8 7 7 3 2 9
思路
上面的原理是双链表的原理,但实际运用过程中我们一般构造双向循环链表。这样可以将最左侧插入和最有侧插入整合起来。
注意代码部分很容易写错,注意仔细remove函数和add函数是否正确。
代码示例
#include <iostream>
using namespace std;
const int N = 1e5 + 10;
int head, tail, e[N], l[N], r[N], idx;
void init()
{
head = 0;
tail = 1;
l[1] = 0;
r[0] = 1;
idx = 2; // 插入点从2开始 所以后面的操作k点都要+1
}
void add(int k, int x)
{
e[idx] = x, l[idx] = k, r[idx] = r[k], l[r[k]] = idx, r[k] = idx, idx ++;
}
void remove(int k)
{
r[l[k]] = r[k], l[r[k]] = l[k];
}
int main()
{
int n;
cin >> n;
init();
while(n --)
{
string op;
int k, x;
cin >> op;
if (op == "L")
{
cin >> x;
add(head,x);
}
else if (op == "R")
{
cin >> x;
add(l[tail], x);
}
else if (op == "D")
{
cin >> k;
remove(k + 1);
}
else if (op == "IL")
{
cin >> k >> x;
add(l[k + 1], x);
}
else
{
cin >> k >> x;
add(k + 1, x);
}
}
for(int i = r[0]; i != 1; i = r[i]) cout << e[i] << ' ';
cout << endl;
return 0;
}