C++ 最短路

链接:https://ac.nowcoder.com/acm/problem/14369
来源:牛客网

题目描述

简单暴力的题目要求:
给定一个有n个顶点(从1到n编号),m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路。

输入描述:

第一行两个整数n, m。
接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。

输出描述:

共n-1行,第i行表示1号点到i+1号点的最短路。

输入

3 3
1 2 -1
2 3 -1
3 1 2

输出

-1
-2

解题思路
这道题用的方法是spfa+前向星图,存图然后遍历,再输出

解题代码

#include<bits/stdc++.h> 
using namespace std;
int head[200005];
int cnt,n,m;
int dist[20005];
int flag[20005];
queue<int> q;
struct Edge{
	int v,next,w;
}edge[200005];
void add_edge(int u,int v,int w){//星图存储
	cnt++;
	edge[cnt].v = v;
	edge[cnt].next = head[u];
	edge[cnt].w = w;
	head[u] = cnt;
}

void Spfa(int t)
{
	memset(dist,127,sizeof(dist));
	memset(flag,0,sizeof(flag));
	dist[t]=0;
	flag[t]=1;
	q.push(t);
	while(!q.empty()){
		int v = q.front();
		q.pop();
		flag[v]=0;
		for(int i=head[v];i>0;i=edge[i].next){	//遍历星图
			if(dist[edge[i].v]>edge[i].w+dist[v]){
				dist[edge[i].v]=edge[i].w+dist[v];
				if(!flag[edge[i].v]){
					q.push(edge[i].v);
					flag[edge[i].v]=1;
				}
			}
		}
	}
	for(int i=1;i<=n;i++){	//输出
		if(i!=t){
			cout<<dist[i]<<endl;
		}
	}
}


int main()
{
	int u,v,w;
	ios::sync_with_stdio(0);
	cin.tie(0);cout.tie(0);
	cin>>n>>m;
	for(int i=1;i<=m;i++){
		cin>>u>>v>>w;
		add_edge(u,v,w);
	}
	Spfa(1);
	
}

说明

对于10%的数据,n = 2,m = 2。
对于30%的数据,n <= 5,m <= 10。
对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。

Dijkstra算法是求单源最短路径的经典算法,其基本思想是通过逐步扩展生成最短路径集合,最终得到源点到所有其它点的最短路径。 以下是C++实现: ```c++ #include <iostream> #include <vector> #include <queue> #include <cstring> using namespace std; const int INF = 0x3f3f3f3f; // 定义正无穷 struct Edge { int to, w; Edge(int to, int w) : to(to), w(w) {} }; vector<Edge> G[100010]; // 邻接表存图 int dist[100010]; // 存储最短路径长度 bool vis[100010]; // 标记是否已经确定最短路径 void dijkstra(int s) { memset(dist, INF, sizeof(dist)); // 初始化距离为正无穷 memset(vis, false, sizeof(vis)); // 初始化标记为未确定最短路径 dist[s] = 0; // 源点到自己的距离为0 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; // 小根堆 q.push(make_pair(0, s)); // 将源点入队 while(!q.empty()) { int u = q.top().second; // 取出当前距离最小的点 q.pop(); if(vis[u]) continue; // 如果已经确定最短路径,直接跳过 vis[u] = true; // 标记为已确定最短路径 for(auto e : G[u]) { // 遍历所有相邻的点 int v = e.to; int w = e.w; if(dist[v] > dist[u] + w) { // 如果当前路径更优 dist[v] = dist[u] + w; // 更新最短路径距离 q.push(make_pair(dist[v], v)); // 将该点加入小根堆 } } } } int main() { int n, m, s; cin >> n >> m >> s; for(int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; G[u].push_back(Edge(v, w)); } dijkstra(s); for(int i = 1; i <= n; i++) { if(dist[i] == INF) cout << "INF" << endl; // 如果不连通,输出INF else cout << dist[i] << endl; } return 0; } ``` 输入格式:第一行输入三个整数n,m,s,表示图的点数、边数和源点编号。接下来m行每行三个整数u,v,w,表示一条从u到v的有向边,边权为w。 输出格式:输出n行,每行一个整数,表示源点到每个点的最短路径长度。若不连通,则输出INF。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祖安大龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值