极限(高等数学)

极限

一、极限

  • 对于数列 { X n } \{X_n\} {Xn},当 n → ∞ n→∞ n时, X n X_n Xn无限趋近于常数A,则称当n趋于无穷大时,常数A为数列 { X n } \{X_n\} {Xn}的极限,或称数列 { X n } \{X_n\} {Xn}收敛于A,记作:

    lim ⁡ n → ∞ X n = A            或            X n → A ( n → ∞ ) \lim \limits_{n→∞}X_n = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ X_n→A(n→∞) nlimXn=A                    XnAn

  • 对于函数 y = f ( x ) y=f(x) y=f(x),当 x → ∞ x→∞ x时, f ( x ) f(x) f(x)无限趋近于常数A,则称A为函数 f ( x ) f(x) f(x) x → ∞ x→∞ x时的极限,记作:

    lim ⁡ x → ∞ f ( x ) = A            或            f ( x ) → A ( x → ∞ ) \lim \limits_{x→∞}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→∞) xlimf(x)=A                    f(x)Ax

  • 对于函数 y = f ( x ) y=f(x) y=f(x),当 x → + ∞ x→+∞ x+ x → − ∞ x→-∞ x)时, f ( x ) f(x) f(x)无限趋近于常数A,则称A为函数 f ( x ) f(x) f(x) x → + ∞ x→+∞ x+ x → − ∞ x→-∞ x)时的极限,记作:

    lim ⁡ x → + ∞ f ( x ) = A            或            f ( x ) → A ( x → + ∞ ) \lim \limits_{x→+∞}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→+∞) x+limf(x)=A                    f(x)Ax+
    lim ⁡ x → − ∞ f ( x ) = A            或            f ( x ) → A ( x → − ∞ ) \lim \limits_{x→-∞}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→-∞) xlimf(x)=A                    f(x)Ax

极限 lim ⁡ x → ∞ f ( x ) \lim \limits_{x→∞}f(x) xlimf(x)存在 ⇔ \Leftrightarrow 极限 lim ⁡ x → + ∞ f ( x ) \lim \limits_{x→+∞}f(x) x+limf(x) lim ⁡ x → − ∞ f ( x ) \lim \limits_{x→-∞}f(x) xlimf(x)存在且相等。

  • 对于函数 y = f ( x ) y=f(x) y=f(x),当 x x x无限趋近于 x 0 x_0 x0时, f ( x ) f(x) f(x)无限趋近于常数A,则称A为函数 f ( x ) f(x) f(x) x → x 0 x→x_0 xx0时的极限,记作:

    lim ⁡ x → x 0 f ( x ) = A            或            f ( x ) → A ( x → x 0 ) \lim \limits_{x→x_0}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→x_0) xx0limf(x)=A                    f(x)Axx0

  • 对于函数 y = f ( x ) y=f(x) y=f(x),当 x x x x 0 x_0 x0的左(右)无限趋近于 x 0 x_0 x0时, f ( x ) f(x) f(x)无限趋近于常数A,则称A为函数 f ( x ) f(x) f(x) x → x 0 x→x_0 xx0时的左(右)极限,记作:

    lim ⁡ x → x 0 − f ( x ) = A            或            f ( x ) → A ( x → x 0 − ) \lim \limits_{x→x_0^-}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→x_0^-) xx0limf(x)=A                    f(x)Axx0
    lim ⁡ x → x 0 + f ( x ) = A            或            f ( x ) → A ( x → x 0 + ) \lim \limits_{x→x_0^+}f(x) = A\ \ \ \ \ \ \ \ \ \ 或\ \ \ \ \ \ \ \ \ \ f(x) →A(x→x_0^+) xx0+limf(x)=A                    f(x)Axx0+

极限 lim ⁡ x → x 0 f ( x ) \lim \limits_{x→x_0}f(x) xx0limf(x)存在 ⇔ \Leftrightarrow 极限 lim ⁡ x → x 0 − f ( x ) \lim \limits_{x→x_0^-}f(x) xx0limf(x) lim ⁡ x → x 0 + f ( x ) \lim \limits_{x→x_0^+}f(x) xx0+limf(x)存在且相等。

  • 两个重要极限:

    ① lim ⁡ x → 0 s i n x x = 1            ( 0 0 型 ) ①\lim \limits_{x→0}\frac{sinx}{x}=1\ \ \ \ \ \ \ \ \ \ (\frac{0}{0}型) x0limxsinx=1          (00)

    ② lim ⁡ x → ∞ ( 1 + 1 x ) x = e            ( 1 ∞ 型 ) ②\lim \limits_{x→∞}(1+\frac{1}{x})^x=e\ \ \ \ \ \ \ \ \ \ (1^∞型) xlim(1+x1)x=e          (1)

(1)无穷小量
  • 当自变量 x → x 0 x→x_0 xx0(或 x → ∞ x→∞ x)时,函数 f ( x ) f(x) f(x)的极限值为零,则称当 x → x 0 x→x_0 xx0(或 x → ∞ x→∞ x)时,函数 f ( x ) f(x) f(x)为无穷小量,简称无穷小,记作:

    lim ⁡ x → x 0 f ( x ) = 0            ( 或 lim ⁡ x → ∞ f ( x ) = 0 ) \lim \limits_{x→x_0}f(x) = 0\ \ \ \ \ \ \ \ \ \ (或\lim \limits_{x→∞}f(x) = 0) xx0limf(x)=0          (xlimf(x)=0)

  • α α α β β β是同一过程的无穷小量,即 lim ⁡ α = 0 \lim α = 0 limα=0 lim ⁡ β = 0 \lim β = 0 limβ=0
    ① ① 如果 α β = 0 \frac{α}{β} = 0 βα=0,则称 α α α是比 β β β高阶的无穷小量,记作:
    α = o ( β ) α = o(β) α=o(β)

    ② ② 如果 α β = C ≠ 0 \frac{α}{β} = C ≠ 0 βα=C=0,则称 α α α是与 β β β同价的无穷小量

    ③ ③ 如果 α β = C = 1 \frac{α}{β} = C = 1 βα=C=1,则称 α α α β β β是等价的无穷小量,记作:
    α α α ~ β β β

    ④ ④ 如果 α β = ∞ \frac{α}{β} = ∞ βα=,则称 α α α是比 β β β底价的无穷小量

  • 常用等价无穷小:
    x → 0 x→0 x0时, x x x ~ s i n x sinx sinx ~ a r c s i n x arcsinx arcsinx ~ t a n x tanx tanx ~ a r c t a n x arctanx arctanx ~ I n ( 1 + x ) In(1+x) In(1+x) ~ e x − 1 e^x-1 ex1
    1 − c o s x 1-cosx 1cosx ~ 1 2 x 2 \frac{1}{2}x^2 21x2
    ( 1 + x ) μ − 1 (1+x)^μ-1 (1+x)μ1 ~ μ x μx μx μ μ μ为实常数, μ ≠ 0 μ≠0 μ=0)。

有限个无穷小量的和、差、积仍为无穷小量。

无穷小量与有界量之积仍为无穷小量。

若极限 lim ⁡ x → x 0 ( x → ∞ ) f ( x ) = A \lim \limits_{x→x_0(x→∞)}f(x)=A xx0(x)limf(x)=A,则 f ( x ) = A + a f(x)=A+a f(x)=A+a,且 lim ⁡ x → x 0 ( x → ∞ ) a = 0 \lim \limits_{x→x_0(x→∞)}a=0 xx0(x)lima=0

(2)无穷大量
  • 当自变量 x → x 0 x→x_0 xx0(或 x → ∞ x→∞ x)时,函数 f ( x ) f(x) f(x)的绝对值无限增大,则称当 x → x 0 x→x_0 xx0(或 x → ∞ x→∞ x)时,函数 f ( x ) f(x) f(x)为无穷大量,简称无穷大,记作:

    lim ⁡ x → x 0 f ( x ) = ∞            ( 或 lim ⁡ x → ∞ f ( x ) = ∞ ) \lim \limits_{x→x_0}f(x) = ∞\ \ \ \ \ \ \ \ \ \ (或\lim \limits_{x→∞}f(x) = ∞) xx0limf(x)=          (xlimf(x)=)

在同一变化过程中,如果 f ( x ) f(x) f(x)为无穷大量,则 1 f ( x ) \frac{1}{f(x)} f(x)1为无穷小量;反之,如果 f ( x ) f(x) f(x)为无穷小量,且 f ( x ) ≠ 0 f(x)≠0 f(x)=0,则 1 f ( x ) \frac{1}{f(x)} f(x)1为无穷大量。

(3)数列极限的性质

唯一性:若数列 { x n } \{x_n\} {xn}收敛,则其极限值必定唯一。

有界性:若数列 { x n } \{x_n\} {xn}收敛,则它必定有界。

夹逼性:若数列 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} { z n } \{z_n\} {zn}满足不等式   x n ≤ y n ≤ z n \ x_n \leq y_n \leq z_n  xnynzn,且 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ z n = A \lim \limits_{n→∞}x_n=\lim \limits_{n→∞}z_n=A nlimxn=nlimzn=A,则 lim ⁡ n → ∞ y n = A \lim \limits_{n→∞}y_n=A nlimyn=A

收敛准则:单调有界数列必有极限。

四则运算性质:设有数列 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn},如果 lim ⁡ n → ∞ x n = A \lim \limits_{n→∞}x_n=A nlimxn=A lim ⁡ n → ∞ y n = B \lim \limits_{n→∞}y_n=B nlimyn=B,则
① lim ⁡ n → ∞ ( x n ± y n ) = lim ⁡ n → ∞ x n ± lim ⁡ n → ∞ y n = A ± B ①\lim \limits_{n→∞}(x_n±y_n)=\lim \limits_{n→∞}x_n±\lim \limits_{n→∞}y_n=A±B nlim(xn±yn)=nlimxn±nlimyn=A±B

② lim ⁡ n → ∞ ( x n ⋅ y n ) = lim ⁡ n → ∞ x n ⋅ lim ⁡ n → ∞ y n = A ⋅ B ②\lim \limits_{n→∞}(x_n·y_n)=\lim \limits_{n→∞}x_n·\lim \limits_{n→∞}y_n=A·B nlim(xnyn)=nlimxnnlimyn=AB

③ 当 B ≠ 0 时 , lim ⁡ n → ∞ x n y n = lim ⁡ n → ∞ x n lim ⁡ n → ∞ y n = A B ③当B≠0时,\lim \limits_{n→∞}\frac{x_n}{y_n}=\frac{\lim \limits_{n→∞}x_n}{\lim \limits_{n→∞}y_n}=\frac{A}{B} B=0nlimynxn=nlimynnlimxn=BA

(4)函数极限的性质

唯一性:如果 lim ⁡ x → x 0 f ( x ) = A \lim \limits_{x→x_0}f(x)=A xx0limf(x)=A存在,则其极限值必定唯一。

夹逼性:设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) h ( x ) h(x) h(x)在点 x 0 x_0 x0的某个领域内(点 x 0 x_0 x0可除外)满足条件   f ( x ) ≤ g ( x ) ≤ h ( x ) \ f(x) \leq g(x) \leq h(x)  f(x)g(x)h(x),且 lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 h ( x ) = A \lim \limits_{x→x_0}f(x)=\lim \limits_{x→x_0}h(x)=A xx0limf(x)=xx0limh(x)=A,则 lim ⁡ x → x 0 g ( x ) = A \lim \limits_{x→x_0}g(x)=A xx0limg(x)=A
注:该结论对 x → ∞ x→∞ x的情况也成立。

四则运算性质:如果有 lim ⁡ x → ∞ f ( x ) = A \lim \limits_{x→∞}f(x)=A xlimf(x)=A lim ⁡ x → ∞ g ( x ) = B \lim \limits_{x→∞}g(x)=B xlimg(x)=B,则
① lim ⁡ x → ∞ ( f ( x ) ± g ( x ) ) = lim ⁡ x → ∞ f ( x ) ± lim ⁡ x → ∞ g ( x ) = A ± B ①\lim \limits_{x→∞}(f(x)±g(x))=\lim \limits_{x→∞}f(x)±\lim \limits_{x→∞}g(x)=A±B xlim(f(x)±g(x))=xlimf(x)±xlimg(x)=A±B

② lim ⁡ x → ∞ ( f ( x ) ⋅ g ( x ) ) = lim ⁡ x → ∞ f ( x ) ⋅ lim ⁡ x → ∞ g ( x ) = A ⋅ B ②\lim \limits_{x→∞}(f(x)·g(x))=\lim \limits_{x→∞}f(x)·\lim \limits_{x→∞}g(x)=A·B xlim(f(x)g(x))=xlimf(x)xlimg(x)=AB

③ 当 B ≠ 0 时 , lim ⁡ x → ∞ f ( x ) g ( x ) = lim ⁡ x → ∞ f ( x ) lim ⁡ x → ∞ g ( x ) = A B ③当B≠0时,\lim \limits_{x→∞}\frac{f(x)}{g(x)}=\frac{\lim \limits_{x→∞}f(x)}{\lim \limits_{x→∞}g(x)}=\frac{A}{B} B=0xlimg(x)f(x)=xlimg(x)xlimf(x)=BA
注:可将法则中 x → ∞ x→∞ x换成 x → x 0 x→x_0 xx0 x → x 0 − x→x_0^- xx0 x → x 0 + x→x_0^+ xx0+ x → + ∞ x→+∞ x+ x → − ∞ x→-∞ x等任意一种自变量变化趋势,性质仍成立。

常用解题方法
第一种:因式分解

因式分解后消去零因子,此种方法多用于分子分母都为多项式的情况。

例: lim ⁡ x → 1 x 4 − 1 x 3 − 1 \lim \limits_{x→1}\frac{x^4-1}{x^3-1} x1limx31x41

x x x 无限趋近与一个确定的常数,首先考虑代入,通过代入发现分母 x 3 − 1 = 0 x^3-1=0 x31=0,因此不可取;分子 x 4 − 1 x^4-1 x41可通过平方差得到 ( x 2 + 1 ) ( x 2 − 1 ) (x^2+1)(x^2-1) (x2+1)(x21),分母 x 3 − 1 x^3-1 x31可通过立方差得到 ( x − 1 ) ( x 2 + x + 1 ) (x-1)(x^2+x+1) (x1)(x2+x+1),如下:

lim ⁡ x → 1 x 4 − 1 x 3 − 1 = lim ⁡ x → 1 ( x 2 + 1 ) ( x 2 − 1 ) ( x − 1 ) ( x 2 + x + 1 ) \lim \limits_{x→1}\frac{x^4-1}{x^3-1}=\lim \limits_{x→1}\frac{(x^2+1)(x^2-1)}{(x-1)(x^2+x+1)} x1limx31x41=x1lim(x1)(x2+x+1)(x2+1)(x21)

再把 x = 1 x=1 x=1代入发现分母 ( x − 1 ) ( x 2 + x + 1 ) = 0 (x-1)(x^2+x+1)=0 (x1)(x2+x+1)=0,因此仍然不可取;分子 ( x 2 + 1 ) ( x 2 − 1 ) (x^2+1)(x^2-1) (x2+1)(x21)右边的乘数还可通过平方差得到 ( x 2 + 1 ) ( x + 1 ) ( x − 1 ) (x^2+1)(x+1)(x-1) (x2+1)(x+1)(x1),这时的分子分母同时存在乘数 ( x − 1 ) (x-1) (x1),约掉如下:

lim ⁡ x → 1 ( x 2 + 1 ) ( x 2 − 1 ) ( x − 1 ) ( x 2 + x + 1 ) = lim ⁡ x → 1 ( x 2 + 1 ) ( x + 1 ) ( x − 1 ) ( x − 1 ) ( x 2 + x + 1 ) = lim ⁡ x → 1 ( x 2 + 1 ) ( x + 1 ) x 2 + x + 1 \lim \limits_{x→1}\frac{(x^2+1)(x^2-1)}{(x-1)(x^2+x+1)}=\lim \limits_{x→1}\frac{(x^2+1)(x+1)(x-1)}{(x-1)(x^2+x+1)}=\lim \limits_{x→1}\frac{(x^2+1)(x+1)}{x^2+x+1} x1lim(x1)(x2+x+1)(x2+1)(x21)=x1lim(x1)(x2+x+1)(x2+1)(x+1)(x1)=x1limx2+x+1(x2+1)(x+1)

再把 x = 1 x=1 x=1代入发现分母 x 2 + x + 1 ≠ 0 x^2+x+1≠0 x2+x+1=0,最后得到结果 4 3 \frac{4}{3} 34,如下:

lim ⁡ x → 1 ( x 2 + 1 ) ( x + 1 ) x 2 + x + 1 = ( 1 + 1 ) × ( 1 + 1 ) 1 + 1 + 1 = 4 3 \lim \limits_{x→1}\frac{(x^2+1)(x+1)}{x^2+x+1}=\frac{(1+1)\times(1+1)}{1+1+1}=\frac{4}{3} x1limx2+x+1(x2+1)(x+1)=1+1+1(1+1)×(1+1)=34

第二种:有理化

若待求极限的函数中含有形如 a ± b a±\sqrt b a±b a ± b \sqrt a±\sqrt b a ±b 的式子,可考虑有理化,以达到消去零因子的目的。

例: lim ⁡ x → 0 x + 1 − 1 x + 1 3 − 1 \lim \limits_{x→0}\frac{\sqrt{x+1}-1}{\sqrt[3]{x+1}-1} x0lim3x+1 1x+1 1

首先考虑代入,通过代入发现分母 x + 1 3 − 1 = 0 \sqrt[3]{x+1}-1=0 3x+1 1=0,因此不可取;分子 x + 1 − 1 \sqrt{x+1}-1 x+1 1可乘以 x + 1 + 1 \sqrt{x+1}+1 x+1 +1再通过平方差得到 x x x,如下:

lim ⁡ x → 0 x + 1 − 1 x + 1 3 − 1 = lim ⁡ x → 0 ( x + 1 − 1 ) ( x + 1 + 1 ) ( x + 1 3 − 1 ) ( x + 1 + 1 ) = lim ⁡ x → 0 ( x + 1 ) 2 − 1 2 ( x + 1 3 − 1 ) ( x + 1 + 1 ) = lim ⁡ x → 0 x ( x + 1 3 − 1 ) ( x + 1 + 1 ) \lim \limits_{x→0}\frac{\sqrt{x+1}-1}{\sqrt[3]{x+1}-1}=\lim \limits_{x→0}\frac{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}{(\sqrt[3]{x+1}-1)(\sqrt{x+1}+1)}=\lim \limits_{x→0}\frac{(\sqrt{x+1})^2-1^2}{(\sqrt[3]{x+1}-1)(\sqrt{x+1}+1)}=\lim \limits_{x→0}\frac{x}{(\sqrt[3]{x+1}-1)(\sqrt{x+1}+1)} x0lim3x+1 1x+1 1=x0lim(3x+1 1)(x+1 +1)(x+1 1)(x+1 +1)=x0lim(3x+1 1)(x+1 +1)(x+1 )212=x0lim(3x+1 1)(x+1 +1)x

再把 x = 0 x=0 x=0代入发现分母 ( x + 1 3 − 1 ) ( x + 1 − 1 ) = 0 (\sqrt[3]{x+1}-1)(\sqrt{x+1}-1)=0 (3x+1 1)(x+1 1)=0,因此仍然不可取;分母 ( x + 1 3 − 1 ) ( x + 1 − 1 ) (\sqrt[3]{x+1}-1)(\sqrt{x+1}-1) (3x+1 1)(x+1 1)右边的乘数可通过乘以 [ ( x + 1 ) 2 3 + x + 1 3 + 1 ] [\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1] [3(x+1)2 +3x+1 +1]得到 x x x,这时的分子分母同时存在 x x x,约掉如下:

lim ⁡ x → 0 x ( x + 1 3 − 1 ) ( x + 1 + 1 ) = lim ⁡ x → 0 x [ ( x + 1 ) 2 3 + x + 1 3 + 1 ] ( x + 1 3 − 1 ) [ ( x + 1 ) 2 3 + x + 1 3 + 1 ] ( x + 1 + 1 ) = lim ⁡ x → 0 x [ ( x + 1 ) 2 3 + x + 1 3 + 1 ] x ( x + 1 + 1 ) = lim ⁡ x → 0 ( x + 1 ) 2 3 + x + 1 3 + 1 x + 1 + 1 \lim \limits_{x→0}\frac{x}{(\sqrt[3]{x+1}-1)(\sqrt{x+1}+1)}=\lim \limits_{x→0}\frac{x[\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1]}{(\sqrt[3]{x+1}-1)[\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1](\sqrt{x+1}+1)}=\lim \limits_{x→0}\frac{x[\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1]}{x(\sqrt{x+1}+1)}=\lim \limits_{x→0}\frac{\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1}{\sqrt{x+1}+1} x0lim(3x+1 1)(x+1 +1)x=x0lim(3x+1 1)[3(x+1)2 +3x+1 +1](x+1 +1)x[3(x+1)2 +3x+1 +1]=x0limx(x+1 +1)x[3(x+1)2 +3x+1 +1]=x0limx+1 +13(x+1)2 +3x+1 +1

再把 x = 0 x=0 x=0代入发现分母 x + 1 + 1 ≠ 0 \sqrt{x+1}+1≠0 x+1 +1=0,最后得到结果 3 2 \frac{3}{2} 23,如下:

lim ⁡ x → 0 ( x + 1 ) 2 3 + x + 1 3 + 1 x + 1 + 1 = ( 0 + 1 ) 2 3 + 0 + 1 3 + 1 0 + 1 + 1 = 3 2 \lim \limits_{x→0}\frac{\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1}{\sqrt{x+1}+1}=\frac{\sqrt[3]{(0+1)^2}+\sqrt[3]{0+1}+1}{\sqrt{0+1}+1}=\frac{3}{2} x0limx+1 +13(x+1)2 +3x+1 +1=0+1 +13(0+1)2 +30+1 +1=23

由于 x → 0 x→0 x0,根据 ( 1 + x ) μ − 1 (1+x)^μ-1 (1+x)μ1 ~ μ x μx μx 可得到 x + 1 − 1 = ( x + 1 ) 1 2 − 1 \sqrt{x+1}-1=(x+1)^{\frac{1}{2}}-1 x+1 1=(x+1)211 ~ 1 2 x \frac{1}{2}x 21x x + 1 3 − 1 = ( x + 1 ) 1 3 − 1 \sqrt[3]{x+1}-1=(x+1)^{\frac{1}{3}}-1 3x+1 1=(x+1)311 ~ 1 3 x \frac{1}{3}x 31x;也可通过无穷小代换求极限。

lim ⁡ x → 0 x + 1 − 1 x + 1 3 − 1 = lim ⁡ x → 0 ( x + 1 ) 1 2 − 1 ( x + 1 ) 1 3 − 1 = 1 2 x 1 3 x = 3 2 \lim \limits_{x→0}\frac{\sqrt{x+1}-1}{\sqrt[3]{x+1}-1}=\lim \limits_{x→0}\frac{(x+1)^{\frac{1}{2}}-1}{(x+1)^{\frac{1}{3}}-1}=\frac{\frac{1}{2}x}{\frac{1}{3}x}=\frac{3}{2} x0lim3x+1 1x+1 1=x0lim(x+1)311(x+1)211=31x21x=23

第三种:重要极限

函数中含有正弦函数或隐含有正弦函数(即稍作变化可出现正弦函数)时,可考虑使用重要极限 lim ⁡ x → 0 s i n x x = 1 \lim \limits_{x→0}\frac{sinx}{x}=1 x0limxsinx=1

例: lim ⁡ x → π 4 t a n 2 x ⋅ t a n ( π 4 − x ) \lim \limits_{x→\frac{π}{4}}tan2x·tan(\frac{π}{4}-x) x4πlimtan2xtan(4πx)

根据 t a n α = s i n α c o s α tanα=\frac{sinα}{cosα} tanα=cosαsinα得到 lim ⁡ x → π 4 s i n 2 x c o s 2 x ⋅ s i n ( π 4 − x ) c o s ( π 4 − x ) \lim \limits_{x→\frac{π}{4}}\frac{sin2x}{cos2x}·\frac{sin(\frac{π}{4}-x)}{cos(\frac{π}{4}-x)} x4πlimcos2xsin2xcos(4πx)sin(4πx),根据四则运算得到 lim ⁡ x → π 4 s i n 2 x lim ⁡ x → π 4 c o s 2 x ⋅ lim ⁡ x → π 4 s i n ( π 4 − x ) lim ⁡ x → π 4 c o s ( π 4 − x ) \frac{\lim \limits_{x→\frac{π}{4}}sin2x}{\lim \limits_{x→\frac{π}{4}}cos2x}·\frac{\lim \limits_{x→\frac{π}{4}}sin(\frac{π}{4}-x)}{\lim \limits_{x→\frac{π}{4}}cos(\frac{π}{4}-x)} x4πlimcos2xx4πlimsin2xx4πlimcos(4πx)x4πlimsin(4πx),由于 lim ⁡ x → π 4 s i n 2 x = 1 \lim \limits_{x→\frac{π}{4}}sin2x=1 x4πlimsin2x=1 lim ⁡ x → π 4 c o s ( π 4 − x ) = 1 \lim \limits_{x→\frac{π}{4}}cos(\frac{π}{4}-x)=1 x4πlimcos(4πx)=1,化简得到 lim ⁡ x → π 4 s i n ( π 4 − x ) c o s 2 x \lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{cos2x} x4πlimcos2xsin(4πx),如下:

lim ⁡ x → π 4 t a n 2 x ⋅ t a n ( π 4 − x ) = lim ⁡ x → π 4 s i n 2 x c o s 2 x ⋅ s i n ( π 4 − x ) c o s ( π 4 − x ) = lim ⁡ x → π 4 s i n 2 x lim ⁡ x → π 4 c o s 2 x ⋅ lim ⁡ x → π 4 s i n ( π 4 − x ) lim ⁡ x → π 4 c o s ( π 4 − x ) = lim ⁡ x → π 4 s i n ( π 4 − x ) c o s 2 x \lim \limits_{x→\frac{π}{4}}tan2x·tan(\frac{π}{4}-x)=\lim \limits_{x→\frac{π}{4}}\frac{sin2x}{cos2x}·\frac{sin(\frac{π}{4}-x)}{cos(\frac{π}{4}-x)}=\frac{\lim \limits_{x→\frac{π}{4}}sin2x}{\lim \limits_{x→\frac{π}{4}}cos2x}·\frac{\lim \limits_{x→\frac{π}{4}}sin(\frac{π}{4}-x)}{\lim \limits_{x→\frac{π}{4}}cos(\frac{π}{4}-x)}=\lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{cos2x} x4πlimtan2xtan(4πx)=x4πlimcos2xsin2xcos(4πx)sin(4πx)=x4πlimcos2xx4πlimsin2xx4πlimcos(4πx)x4πlimsin(4πx)=x4πlimcos2xsin(4πx)

根据诱导公式 c o s x = s i n ( π 2 − x ) cosx=sin(\frac{π}{2}-x) cosx=sin(2πx)可得知 c o s 2 x = s i n ( π 2 − 2 x ) cos2x=sin(\frac{π}{2}-2x) cos2x=sin(2π2x),得到 lim ⁡ x → π 4 s i n ( π 4 − x ) s i n ( π 2 − 2 x ) \lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{sin(\frac{π}{2}-2x)} x4πlimsin(2π2x)sin(4πx),再将分母化简得到 lim ⁡ x → π 4 s i n ( π 4 − x ) s i n 2 ( π 4 − x ) \lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{sin2(\frac{π}{4}-x)} x4πlimsin2(4πx)sin(4πx),如下:

lim ⁡ x → π 4 s i n ( π 4 − x ) c o s 2 x = lim ⁡ x → π 4 s i n ( π 4 − x ) s i n ( π 2 − 2 x ) = lim ⁡ x → π 4 s i n ( π 4 − x ) s i n 2 ( π 4 − x ) \lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{cos2x}=\lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{sin(\frac{π}{2}-2x)}=\lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{sin2(\frac{π}{4}-x)} x4πlimcos2xsin(4πx)=x4πlimsin(2π2x)sin(4πx)=x4πlimsin2(4πx)sin(4πx)

由于 x → π 4 x→\frac{π}{4} x4π,因此 π 4 − x → 0 \frac{π}{4}-x→0 4πx0 2 ( π 4 − x ) → 0 2(\frac{π}{4}-x)→0 2(4πx)0,分子 s i n ( π 4 − x ) sin(\frac{π}{4}-x) sin(4πx)、分母 s i n 2 ( π 4 − x ) sin2(\frac{π}{4}-x) sin2(4πx)都能使用重要极限 lim ⁡ x → 0 s i n x x = 1 ( 0 0 型 ) \lim \limits_{x→0}\frac{sinx}{x}=1(\frac{0}{0}型) x0limxsinx=1(00),得 lim ⁡ x → π 4 π 4 − x 2 ( π 4 − x ) \lim \limits_{x→\frac{π}{4}}\frac{\frac{π}{4}-x}{2(\frac{π}{4}-x)} x4πlim2(4πx)4πx,最后约分得 1 2 \frac{1}{2} 21,如下:

lim ⁡ x → π 4 s i n ( π 4 − x ) s i n 2 ( π 4 − x ) = lim ⁡ x → π 4 π 4 − x 2 ( π 4 − x ) = 1 2 \lim \limits_{x→\frac{π}{4}}\frac{sin(\frac{π}{4}-x)}{sin2(\frac{π}{4}-x)}=\lim \limits_{x→\frac{π}{4}}\frac{\frac{π}{4}-x}{2(\frac{π}{4}-x)}=\frac{1}{2} x4πlimsin2(4πx)sin(4πx)=x4πlim2(4πx)4πx=21

第四种:等价无穷小代换

等价无穷小代换必须是因子时才可进行,另外要灵活运用,注意等价无穷小形式上的变化。

例: lim ⁡ x → 5 1 − x − 4 x − 5 \lim \limits_{x→5}\frac{1-\sqrt{x-4}}{x-5} x5limx51x4

分子 1 − x − 4 等 于 1 − ( x − 4 ) 1 2 1-\sqrt{x-4}等于1-(x-4)^\frac{1}{2} 1x4 1(x4)21,可化为 − [ ( 1 + x − 5 ) 1 2 − 1 ] -[(1+x-5)^\frac{1}{2}-1] [(1+x5)211],由于 x → 5 x→5 x5,因此 x − 5 → 0 x-5→0 x50,可通过 ( 1 + x ) μ − 1 (1+x)^μ-1 (1+x)μ1 ~ μ x μx μx进行等价无穷小代换得到 − 1 2 ( x − 5 ) -\frac{1}{2}(x-5) 21(x5),最后约分得到 − 1 2 -\frac{1}{2} 21,如下:

lim ⁡ x → 5 1 − x − 4 x − 5 = lim ⁡ x → 5 1 − ( x − 4 ) 1 2 x − 5 = lim ⁡ x → 5 − [ ( 1 + x − 5 ) 1 2 − 1 ] x − 5 = lim ⁡ x → 5 − 1 2 ( x − 5 ) x − 5 = − 1 2 \lim \limits_{x→5}\frac{1-\sqrt{x-4}}{x-5}=\lim \limits_{x→5}\frac{1-(x-4)^\frac{1}{2}}{x-5}=\lim \limits_{x→5}\frac{-[(1+x-5)^\frac{1}{2}-1]}{x-5}=\lim \limits_{x→5}\frac{-\frac{1}{2}(x-5)}{x-5}=-\frac{1}{2} x5limx51x4 =x5limx51(x4)21=x5limx5[(1+x5)211]=x5limx521(x5)=21

  • 9
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
完整版:https://download.csdn.net/download/qq_27595745/89522468 【课程大纲】 1-1 什么是java 1-2 认识java语言 1-3 java平台的体系结构 1-4 java SE环境安装和配置 2-1 java程序简介 2-2 计算机中的程序 2-3 java程序 2-4 java类库组织结构和文档 2-5 java虚拟机简介 2-6 java的垃圾回收器 2-7 java上机练习 3-1 java语言基础入门 3-2 数据的分类 3-3 标识符、关键字和常量 3-4 运算符 3-5 表达式 3-6 顺序结构和选择结构 3-7 循环语句 3-8 跳转语句 3-9 MyEclipse工具介绍 3-10 java基础知识章节练习 4-1 一维数组 4-2 数组应用 4-3 多维数组 4-4 排序算法 4-5 增强for循环 4-6 数组和排序算法章节练习 5-0 抽象和封装 5-1 面向过程的设计思想 5-2 面向对象的设计思想 5-3 抽象 5-4 封装 5-5 属性 5-6 方法的定义 5-7 this关键字 5-8 javaBean 5-9 包 package 5-10 抽象和封装章节练习 6-0 继承和多态 6-1 继承 6-2 object类 6-3 多态 6-4 访问修饰符 6-5 static修饰符 6-6 final修饰符 6-7 abstract修饰符 6-8 接口 6-9 继承和多态 章节练习 7-1 面向对象的分析与设计简介 7-2 对象模型建立 7-3 类之间的关系 7-4 软件的可维护与复用设计原则 7-5 面向对象的设计与分析 章节练习 8-1 内部类与包装器 8-2 对象包装器 8-3 装箱和拆箱 8-4 练习题 9-1 常用类介绍 9-2 StringBuffer和String Builder类 9-3 Rintime类的使用 9-4 日期类简介 9-5 java程序国际化的实现 9-6 Random类和Math类 9-7 枚举 9-8 练习题 10-1 java异常处理 10-2 认识异常 10-3 使用try和catch捕获异常 10-4 使用throw和throws引发异常 10-5 finally关键字 10-6 getMessage和printStackTrace方法 10-7 异常分类 10-8 自定义异常类 10-9 练习题 11-1 Java集合框架和泛型机制 11-2 Collection接口 11-3 Set接口实现类 11-4 List接口实现类 11-5 Map接口 11-6 Collections类 11-7 泛型概述 11-8 练习题 12-1 多线程 12-2 线程的生命周期 12-3 线程的调度和优先级 12-4 线程的同步 12-5 集合类的同步问题 12-6 用Timer类调度任务 12-7 练习题 13-1 Java IO 13-2 Java IO原理 13-3 流类的结构 13-4 文件流 13-5 缓冲流 13-6 转换流 13-7 数据流 13-8 打印流 13-9 对象流 13-10 随机存取文件流 13-11 zip文件流 13-12 练习题 14-1 图形用户界面设计 14-2 事件处理机制 14-3 AWT常用组件 14-4 swing简介 14-5 可视化开发swing组件 14-6 声音的播放和处理 14-7 2D图形的绘制 14-8 练习题 15-1 反射 15-2 使用Java反射机制 15-3 反射与动态代理 15-4 练习题 16-1 Java标注 16-2 JDK内置的基本标注类型 16-3 自定义标注类型 16-4 对标注进行标注 16-5 利用反射获取标注信息 16-6 练习题 17-1 顶目实战1-单机版五子棋游戏 17-2 总体设计 17-3 代码实现 17-4 程序的运行与发布 17-5 手动生成可执行JAR文件 17-6 练习题 18-1 Java数据库编程 18-2 JDBC类和接口 18-3 JDBC操作SQL 18-4 JDBC基本示例 18-5 JDBC应用示例 18-6 练习题 19-1 。。。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新鑫S

你的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值