不确定理论1

前言

记录下学习刘宝碇老师的不确定理论内容。


一、引言

通过与概率论对比引出不确定理论。

1.罐子实验

考虑一个罐子实验,在100个罐子里分别放入100个红色或黑色的球,不同颜色的球组成只有放入者清楚,满足独立同分布。考虑三个问题:

  1. 你认为第1个罐子有多少个红球?
  2. 你认为100个罐子一共有多少个红球?
  3. 你认为一共有10000个红球的可能性有多大?

如何用概率论回答问题?
由于你不完全知道红球的数目,拉普拉斯准则使你给可能的红球数目分配相等的概率0、1、2、···100。因此,对于1≤i≤100的每个i,第i个罐子中红球的数量是一个随机变量:

概率论对第一个问题回答
由于变量是独立同分布,因此问题2答案:
概率论对第二个问题回答
红球的总数10000当且仅当100个罐子中每个罐子都含有100个红球,红球总数为10000的概率为:
概率论对第三个问题回答
如何用不确定理论回答问题?
由于你不完全知道红球的数量,你必须给可能的红球数量分配相同的信度0,1,2,···,100。因此,对于1≤i≤100的每个i,第i个罐子中红球的数量是一个不确定变量:
不确定理论对第一个问题回答
由于变量是独立同分布,因此问题2答案:
不确定理论对第二个问题回答
红球的总数10000当且仅当100个罐子中每个罐子都含有100个红球,红球总数为10000的信度为:
不确定理论对第三个问题回答
这里的信度即不确定测度在,独立事件的联合事件信度等于信度取小(^为取小意思)。

可以看到用概率论和不确定理论计算出的结果差距很大,该信服哪一个呢?
假定分布函数为
在这里插入图片描述
从分布函数中选择一个随机数k作为放入的红球数量,注意只能取100,因为无论是取小于他的99(概率密度为0)还是大于他的101都不可行。这时红球10000个是成立的,不确定性理论更加准确。

2.结论

如果得到的分布函数与频率足够接近,就应使用概率论,否则,不得不是使用不确定理论,但二者都要先确定分布函数。
如何判断分布函数和频率足够接近呢?答案是不知道判别方法,但古典模型中分布函数和频率接近,实际生活中不确定理论才是常态,比如股票价格、市场需求、产品寿命等。

二、不确定测度

论域:可以理解成集合,要在这个集合里讨论问题。如果没有论语的存在会出现各种悖论。
事件:给一个命题,与事件一一对应,用数学语言表示。如身高1米7以上,3米以下的事件表示为在这里插入图片描述
对立事件:对立事件是事件在论语中的补集,相当于否命题。如身高低于1米7表示为
在这里插入图片描述
事件信度即事件发生的强度,信度越高越相信事件会发生,其值在0~1之间。不同于频率,随着知识、偏好改变,信度也会改变。
信度理解为公平赌率,等于赌率价格/赌注。

σ-代数
在这里插入图片描述
满足上述三个条件,则称ℒ是Γ上的σ-代数


总结

概率论是数学的分支,现在又提出处理不确定问题中的不确定理论的分支,符合实际生活问题。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值