前言
记录下学习刘宝碇老师的不确定理论内容。
一、引言
通过与概率论对比引出不确定理论。
1.罐子实验
考虑一个罐子实验,在100个罐子里分别放入100个红色或黑色的球,不同颜色的球组成只有放入者清楚,满足独立同分布。考虑三个问题:
- 你认为第1个罐子有多少个红球?
- 你认为100个罐子一共有多少个红球?
- 你认为一共有10000个红球的可能性有多大?
如何用概率论回答问题?
由于你不完全知道红球的数目,拉普拉斯准则使你给可能的红球数目分配相等的概率0、1、2、···100。因此,对于1≤i≤100的每个i,第i个罐子中红球的数量是一个随机变量:
由于变量是独立同分布,因此问题2答案:
红球的总数10000当且仅当100个罐子中每个罐子都含有100个红球,红球总数为10000的概率为:
如何用不确定理论回答问题?
由于你不完全知道红球的数量,你必须给可能的红球数量分配相同的信度0,1,2,···,100。因此,对于1≤i≤100的每个i,第i个罐子中红球的数量是一个不确定变量:
由于变量是独立同分布,因此问题2答案:
红球的总数10000当且仅当100个罐子中每个罐子都含有100个红球,红球总数为10000的信度为:
这里的信度即不确定测度在,独立事件的联合事件信度等于信度取小(^为取小意思)。
可以看到用概率论和不确定理论计算出的结果差距很大,该信服哪一个呢?
假定分布函数为
从分布函数中选择一个随机数k作为放入的红球数量,注意只能取100,因为无论是取小于他的99(概率密度为0)还是大于他的101都不可行。这时红球10000个是成立的,不确定性理论更加准确。
2.结论
如果得到的分布函数与频率足够接近,就应使用概率论,否则,不得不是使用不确定理论,但二者都要先确定分布函数。
如何判断分布函数和频率足够接近呢?答案是不知道判别方法,但古典模型中分布函数和频率接近,实际生活中不确定理论才是常态,比如股票价格、市场需求、产品寿命等。
二、不确定测度
论域:可以理解成集合,要在这个集合里讨论问题。如果没有论语的存在会出现各种悖论。
事件:给一个命题,与事件一一对应,用数学语言表示。如身高1米7以上,3米以下的事件表示为
对立事件:对立事件是事件在论语中的补集,相当于否命题。如身高低于1米7表示为
事件信度即事件发生的强度,信度越高越相信事件会发生,其值在0~1之间。不同于频率,随着知识、偏好改变,信度也会改变。
信度理解为公平赌率,等于赌率价格/赌注。
σ-代数
满足上述三个条件,则称ℒ是Γ上的σ-代数
总结
概率论是数学的分支,现在又提出处理不确定问题中的不确定理论的分支,符合实际生活问题。