PS的钢笔工具

PS的钢笔工具

作者:代富强 撰写时间:2019.4.18
钢笔,可能大家刚听到这个名字都以为只是一个写字的钢笔。其实不然,在这里插入图片描述钢笔工具可以做你想要做到的很多事情。在这里插入图片描述钢笔工具可以做形状、路径、也可以直接做像素。可以根据自己的实际情况来选择你的制作方式,可以避免你用不方便的方式操作而浪费时间。比如扣图,虽然套索等工具都可以扣,但是我个人觉得钢笔工具相对于其他工具来说更加得方便快捷。比如把下图的人物用钢笔工具扣出来在这里插入图片描述,经过一系列操作之后,扣出来的成品是这样的在这里插入图片描述,虽然其他工具都可以处理到这种地步,但是钢笔工具更加得便捷,十分好用。
其次从制作图形来说,矩形工具、圆角矩形工具等,这些工具都可以很直接得制作出来,也可以用布尔运算进行下一步加工,从而得到你想要制作的图形。
但是使用钢笔工具制作各种图形,更加得快捷,因为钢笔是不受限制的,直的弯的都可以直接制作,而且不需要任何后期加工。使用钢笔的时候要注意的就是每一个锚点,锚点也可以说是钢笔路径的转折点。做图的时候也是至关重要,改变路径要依靠锚点。
如果你使用的是路径做图,把路径闭合后是填不了色的,要用ctrl+enter来把闭合路径转化为选区,这样才可以进行其他操作。在这里插入图片描述路径也可以保存、复制、删除等,也可以使用画笔描边路径,选好画笔颜色和画笔形状大小,选择画笔工具再选中你想要描的路径在这里插入图片描述,点击画笔描边路径按钮即可。

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值