这一案例是王汉生老师《应用商务统计分析》方差分析章节的案例,主要对离散型变量进行了处理。
这里将连续型变量也加进来,进行协方差分析,建立完整的模型。
首先对房价进行对数变换,解决异方差问题:
进行描述性统计分析,各连续型变量之间的相关关系如下:
名义变量的EDA一般做箱型图。
模型按照全模型-变量处理(分箱等)-变量选择-回归诊断等步骤建立。
最终模型残差图:
通过模型分析结果可知,影响北京市商品房平均销售价格的主要因素有:
属性变量:所在辖区、所在环线、物业类别、装修状况、容积率大小(新引入);连续变量:绿化率、停车位住户比
属性变量的具体影响在此处分析略去。
连续型变量的影响主要为:
绿化率:绿化率的影响十分显著,由系数估计值为正,说明对房价有正向影响,绿化率越高的楼盘房价越高;
停车位住户比:有较显著的影响,停车位住户比越高,价格越高;
同时,原本为连续型变量的容积率经过离散化变为属性变量后:
容积率大小:容积率分组有较显著的影响,高容积率的小区商品房价格更贵;
容积率与环线之间存在着交互效应。
rm(list=ls()) #清空当前工作空间
setwd("D:/回归分析")
a=read.csv("real.csv",header=T) #读入csv格式的数据,赋值为a
View(a)
attach(a)
names(a)
##描述性统计
#未做处理的响应变量分布情况
par(mfrow=c(1,1))
hist(price)
summary(price) #查看响应变量的描述统计量
#连续型变量描述性统计
windows()
pairs(a[,c(6:10)]) #所有连续型变量间的散点图
par(mfrow=c(2,2))
plot(rong,price) #每个连续型因变量与响应变量间的散点图
plot(lv,price)
plot(area,price)
plot(ratio,price)
summary(a[,c(6:10)]) #查看连续型变量的描述统计量
cor(a[,c(6:10)]) #查看连续型变量的相关系数
#属性变量描述性统计
windows()
par(mfrow=c