LeetCode 887. 鸡蛋掉落(一看就懂)

54 篇文章 0 订阅

1.题目

你将获得 K 个鸡蛋,并可以使用一栋从 1 到 N 共有 N 层楼的建筑。
每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去。
你知道存在楼层 F ,满足 0 <= F <= N 任何从高于 F 的楼层落下的鸡蛋都会碎,从 F 楼层或比它低的楼层落下的鸡蛋都不会破。
每次移动,你可以取一个鸡蛋(如果你有完整的鸡蛋)并把它从任一楼层 X 扔下(满足 1 <= X <= N)。
你的目标是确切地知道 F 的值是多少。
无论 F 的初始值如何,你确定 F 的值的最小移动次数是多少?

示例 1:

输入:K = 1, N = 2
输出:2
解释:
鸡蛋从 1 楼掉落。如果它碎了,我们肯定知道 F = 0 。
否则,鸡蛋从 2 楼掉落。如果它碎了,我们肯定知道 F = 1 。
如果它没碎,那么我们肯定知道 F = 2 。
因此,在最坏的情况下我们需要移动 2 次以确定 F 是多少。
示例 2:

输入:K = 2, N = 6
输出:3
示例 3:

输入:K = 3, N = 14
输出:4
 

提示:

1 <= K <= 100
1 <= N <= 10000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/super-egg-drop
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2.题解

简化题目:
我们姑且忽略鸡蛋个数的这个条件。

  • 我们认为鸡蛋的个数是没有限制的,那么此时这个题就变得十分简单了。
  • 我们可以通过使用二分法来找到鸡蛋不会破碎的最大楼层数。

进一步分析
尽管我们对鸡蛋的个数不加限制,但是若只给你一次扔鸡蛋的机会,你咋办?此时二分法就不灵了。所以扔鸡蛋的次数很重要!
假设我们选择第一层扔鸡蛋,如果鸡蛋碎了,则F == 0,否则鸡蛋没有碎,则F == 1。根据结果发现,扔在第一楼,这一楼就可以确定是不是F。这时和鸡蛋的数量没有关系,因为扔了这一次,你已经没有扔的机会。
假设我们选择其他楼层x(x > 1),如果鸡蛋碎了,则F < x,如果鸡蛋没有碎,则F >= x。接下来呢?游戏结束了!!!你只有一次扔鸡蛋的机会!!!
所以如果你只有一次扔鸡蛋的机会,这时你只能在第一层扔鸡蛋,这样你就能确定一层是否是F。
它还告诉我们,如果你有N次测试机会,哪怕你只有一个鸡蛋,你也可以找出任意的F,你从第一层测试,逐渐往上测试,并且会确定F。
所以这道题木利用动态规划的方法进行解答。

算法思路:

我们可以考虑使用动态规划来做这道题,状态可以表示成 (K, N),其中 K 为鸡蛋数,N 为楼层数。当我们从第 X 楼扔鸡蛋的时候:

  • 如果鸡蛋不碎,那么状态变成 (K, N-X),即我们鸡蛋的数目不变,但答案只可能在上方的 N-X
    层楼了。也就是说,我们把原问题缩小成了一个规模为 (K, N-X) 的子问题;
  • 如果鸡蛋碎了,那么状态变成 (K−1,X−1),即我们少了一个鸡蛋,但我们知道答案只可能在第 X 楼下方的
    X-1 层楼中了。也就是说,我们把原问题缩小成了一个规模为 (K-1, X-1)的子问题。

这样一来,我们定义 dp(K,N) 为在状态 (K,N) 下最少需要的步数。根据以上分析我们可以列出状态转移方程:

状态转移方程

这个状态转移方程是如何得来的呢?对于 dp(K,N) 而言,我们像上面分析的那样,枚举第一个鸡蛋扔在的楼层数 X。由于我们并不知道真正的 F 值,因此我们必须保证 鸡蛋碎了之后接下来需要的步数鸡蛋没碎之后接下来需要的步数 二者的 最大值 最小,这样就保证了在 最坏情况下(也就是无论 F 的值如何) dp(K, N) 的值最小。如果能理解这一点,也就能理解上面的状态转移方程,即最小化max(dp(K−1,X−1),dp(K,N−X))。

转化思路:
原问题问的是给定鸡蛋个数和楼层数,求F的最小值。

  • 先将问题从 N 个楼层,有 K 个蛋,求最少要扔 T 次,转变为有 K 个蛋,扔 T 次,可以测试出多少个区间。
  • 我们只能站在楼层上扔蛋测试,楼层相当于点,区间是点与点之间的线段。是从 0 - N ,所以区间比楼层多一。
    比如: 1 层楼, 1 层碎了(F <= 1),1 层没碎 (1 < F)。
    比如: 2 层楼,有 1 层碎了(F <= 1), 1 层没碎但 2 层碎了(1 < F <= 2), 2 层没碎(2 < F)。
  • 如果只有 1 个蛋了,蛋不能碎,只能从低到高一层一层的判断,所以有 T 次机会,就只可以判断出 T + 1 个区间。
  • 当只有 1 次机会时,无论有多少个蛋,你能测试出的楼层都只有 2 层。
  • 其他情况时,递归。【可以测试的区间】 == 【蛋碎了减 1 个,机会减 1 次】 + 【蛋没碎,机会减 1 次】

链接:https://leetcode-cn.com/problems/super-egg-drop/solution/887-by-ikaruga/

class Solution
{
public:
    int superEggDrop(int K, int N)
    {
        int remainTestCount = 1;//穷举移动次数(测试的次数)
        while (getConfirmFloors(remainTestCount, K) < N)
        {
            ++remainTestCount;
        }
        return remainTestCount;
    }
    //在remainTestCount个测试机会(扔鸡蛋的机会 或者移动的次数),eggsCount个鸡蛋可以确定的楼层数量
    int getConfirmFloors(int remainTestCount, int eggsCount)
    {
        if (remainTestCount == 1 || eggsCount == 1)
        {
            //如果remainTestCount == 1你只能移动一次,则你只能确定第一楼是否,也就是说鸡蛋只能放在第一楼,如果碎了,则F == 0,如果鸡蛋没碎,则F == 1
            //如果eggsCount == 1鸡蛋数为1,它碎了你就没有鸡蛋了,为了保险,你只能从第一楼开始逐渐往上测试,如果第一楼碎了(同上),第一楼没碎继续测第i楼,蛋式你不可能无限制的测试,因为你只能测试remainTestCount次
            return remainTestCount;
        }
        return getConfirmFloors(remainTestCount - 1, eggsCount - 1) + 1 + getConfirmFloors(remainTestCount - 1, eggsCount);
    }
};

代码参考:https://blog.csdn.net/qq_41855420/article/details/91996663?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522158659376019195239817061%2522%252C%2522scm%2522%253A%252220140713.130056874…%2522%257D&request_id=158659376019195239817061&biz_id=0&utm_source=distribute.pc_search_result.none-task-blog-blog_SOOPENSEARCH-7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值