- 博客(5)
- 收藏
- 关注
原创 计算机基础八股
1.Python基础知识2.面向对象编程3.数据结构和算法4.网络编程5.并发编程6.数据库编程7.Web框架8.Linux系统操作
2023-09-19 15:28:21 406
原创 机器学习八股
XGBoost的预排序是通过对特征值进行直方图统计来实现的,具体来说,它将每个特征的取值分成若干个桶,然后对每个桶中的样本进行统计,得到一个直方图。这是利用最速下降法的近似方法,其关键是利用损失函数的负梯度在当前模型的值作为回归问题提升树算法中的残差的近似值,拟合一个回归树。解决这个问题的办法是考虑决策树的复杂度。Boosting算法的基本思想是,通过迭代地训练多个弱分类器,每次训练都会调整样本的权重,使得前一个弱分类器分类错误的样本在后续的训练中得到更多的关注,从而提高整个模型的准确率。
2023-09-11 17:31:47 39
转载 数仓基础知识
数仓主题是指在数据仓库中按照业务或主题进行组织和存储的数据集合。数仓主题通常由相关的数据表、维度表和事实表组成,用于支持特定的分析需求和业务问题。每个数仓主题都关注于某一个特定的业务领域或主题,例如销售、客户、产品等。通过将数据按照主题进行划分和组织,数仓主题能够提供更加聚焦和集中的数据视图,方便用户进行数据分析和决策支持。数仓模型是用于构建数据仓库的一种模型,它是一种综合各种数据源,建立集成的、主题导向的、高度可扩展且用于分析和报告的数据架构。维度。
2023-08-30 17:21:19 117
原创 激活函数/损失函数/优化函数 梯度下降法
在训练过程中,优化函数根据当前的权重和偏置,以及损失函数的梯度信息,来更新模型的参数,使得损失函数逐渐减小,模型逐渐收敛到更好的状态。在梯度下降算法中,每次都会遍历整个训练集,然后会对每个参数求偏导,取最大的点,根据负梯度方向是使函数值下降最快的方向,这个是可以通过泰勒展开求得的,在迭代的每一步根据负梯度的方向更新参数w的值,从而求得最小的损失函数J(w)。一般我们认为牛顿法是下降最快的方向。精简版:梯度下降法的目标是最小化损失函数,它通过计算损失函数关于参数的梯度(方向导数)来确定参数更新的方向。
2023-08-30 17:18:05 182
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人