题目描述
春春幼儿园举办了一年一度的“积木大赛”。今年比赛的内容是搭建一座宽度为n的大厦,大厦可以看成由n块宽度为1的积木组成,第i块积木的最终高度需要是h_i 。
在搭建开始之前,没有任何积木(可以看成n块高度为0的积木)。接下来每次操作,小朋友们可以选择一段连续区间[l, r],然后将第第 L块到第 R 块之间(含第 L 块和第 R块)所有积木的高度分别增加1。
小 M 是个聪明的小朋友,她很快想出了建造大厦的最佳策略,使得建造所需的操作次数最少。但她不是一个勤于动手的孩子,所以想请你帮忙实现这个策略,并求出最少的操作次数。
输入格式
包含两行,第一行包含一个整数n,表示大厦的宽度。
第二行包含n个整数,第i个整数为h_i 。
输出格式
建造所需的最少操作数。
输入输出样例
输入
5
2 3 4 1 2
输出
5
说明/提示
【样例解释】
其中一种可行的最佳方案,依次选择
[1,5] [1,3] [2,3] [3,3] [5,5]
【数据范围】
对于 30%的数据,有1 ≤ n ≤ 10;
对于 70%的数据,有1 ≤ n ≤ 1000;
对于 100%的数据,有1 ≤ n ≤ 100000,0 ≤ h_i≤ 10000。
纯模拟!!!!!!
计算相邻两堆的高度差就好了
设l为左边一堆的高度,r为右边一堆的高度,sum为总摆放次数。
一共有两种情况
情况1:左边比右边矮(l<r),则sum+=(r-l)(将右边多出的补齐)。
情况2:左边比右边高或相等(l>=r),所以左边的堆好了,那么右边的肯定堆好了,所以sum不变。
代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
using namespace std;
int n;
int main(){
cin>>n;
int sum=0,l=0;
for(int i=1;i<=n;i++){
int r;
cin>>r;
if(r>l) sum+=(r-l);
l=r;
}
cout<<sum;
}