leetcode413. 等差数列划分(动态规划)

该博客主要探讨了如何解决LeetCode第413题,即等差数列的划分问题。通过使用动态规划的方法,在常数空间内求解数组中所有等差子数组的数量。文章包含详细的代码实现。
摘要由CSDN通过智能技术生成

数组 A 包含 N 个数,且索引从0开始。数组 A 的一个子数组划分为数组 (P, Q),P 与 Q 是整数且满足 0<=P<Q<N 。

如果满足以下条件,则称子数组(P, Q)为等差数组:

元素 A[P], A[p + 1], …, A[Q - 1], A[Q] 是等差的。并且 P + 1 < Q 。

函数要返回数组 A 中所有为等差数组的子数组个数。

代码

class Solution {
    public int numberOfArithmeticSlices(int[] A) {

        int n=A.length;
  if(n==0) return 0;
        int[] dp=new int[n];//数组元素代表以第i个数结尾的等差数列个数
        for(int i=2;i<n;i++)
        {

            dp[i]=dp[i-1];
            int down=A[i]-A[i-1];//差值
            for(int j=i-1;j>0;j--)//向前寻找等差数列
            {
                if(A[j]-A[j-1]!=down)
                    break;
                dp[i]++;

            }
        }
        return dp[n-1];
        
    }
}

常数空间的动态规划

代码

class Solution {
    public int numberOfArithmeticSlices(int[] A) {

        int n = A.length;
        if (n == 0) return 0;
        int sum = 0;
        int dp = 0;
        for (int i = 2; i < n; i++) {
            if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
                dp = 1 + dp;
                sum += dp;
            } else dp = 0;
        }
        return sum;

    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值