动态规划--一和零

下午做力扣上的动态规划添加链接描述,做了两三个小时才通过了。把思路简单概括。
首先创建出一个三维dp数组,在每个维度上的第0维进行初始化,我的问题一直出在初始化上面,三维比二维感觉要复杂不少。状态转移方程是一个套话,做多了直接写出来了。

class Solution(object):
    def findMaxForm(self, strs, m, n):
        """
        :type strs: List[str]
        :type m: int
        :type n: int
        :rtype: int
        """
        def element(strd):
            zero = 0
            one = 0
            for i in strd:
                if i == "0":
                    zero = zero + 1
                elif i == "1":
                    one = one + 1
            return zero, one

        dp = [[[None] * (n + 1) for _ in range(m + 1)] for _ in range(len(strs))]
        dp[0][0][0] = 0
        for i in range(1, len(strs)):
            dp[i][0][0] = 0

        for i in range(0, len(strs)):
            for j in range(1, n + 1):
                zero, one = element(strs[i])
                if zero == 0 and one <= j:
                    if i != 0:
                        dp[i][0][j] = max(dp[i - 1][0][j], dp[i - 1][0][j - one]+1)
                    else:
                        dp[i][0][j] = 1
                else:
                    if i==0:
                        dp[i][0][j] = 0
                    else:
                        dp[i][0][j] = dp[i-1][0][j]

        for i in range(0, len(strs)):
            for j in range(1, m + 1):
                zero, one = element(strs[i])
                if one == 0 and zero <= j:
                    if i != 0:
                        dp[i][j][0] = max(dp[i - 1][j][0], dp[i - 1][j - zero][0]+1)
                    else:
                        dp[i][j][0] = 1
                else:
                    if i==0:
                        dp[i][j][0] = 0
                    else:
                        dp[i][j][0] = dp[i-1][j][0]

        for i in range(0, m + 1):
            for j in range(0, n + 1):
                zero, one = element(strs[0])
                if zero <= i and one <= j:
                    dp[0][i][j] = 1
                else:
                    dp[0][i][j] = 0

        for i in range(1, len(strs)):
            zero, one = element(strs[i])
            for j in range(1, m + 1):
                for k in range(1, n + 1):
                    if j >= zero and k >= one:
                        dp[i][j][k] = max(dp[i - 1][j][k], dp[i - 1][j - zero][k - one] + 1)
                    else:
                        dp[i][j][k] = dp[i - 1][j][k]
        return dp[len(strs) - 1][m][n]

舞台再大,没有勇气上台也永远是个观众。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长公共子序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共子序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共子序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共子序列中,而B中的最后一个元素在最长公共子序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共子序列中,而A中的最后一个元素在最长公共子序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共子序列的长度。要找到具体的最长公共子序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共子序列。 LCS问题是动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值