自适应遗传算法

本文介绍了自适应遗传算法的基本原理,包括编码、解码、交配、变异和选择步骤。自适应方法通过改变交配和变异概率以适应适应度函数值,提高计算效率和收敛速度。文章详细阐述了编码、解码、自适应交配和变异概率的计算,并给出了MATLAB实现的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自适应遗传算法

遗传算法是一种全局优化算法,在求解函数最优值时不容易陷入局部极小的陷阱而出现“死循环”现象,弥补了传统迭代法的不足。本文主要介绍自适应遗传算法的基本原理及实例验证。根据生物进化现象,其基本原理包括编码、解码、交配、变异、选择。其中最核心的,也是遗传算法独有的特征是交配和变异。自适应方法主要是将交配和变异概率改为随适应度函数值的变化而自动改变,即自适应遗传算法。
关键词:遗传算法;自适应遗传算法;函数极值

遗传算法最初由Holland提出,旨在通过通过自然系统的自适应行为来设计具有自适应功能的软件系统,该方法属于进化算法的一种。遗传算法通过对函数自变量范围进行基因编码、交配、基因变异、计算函数适应度值、选择较优值到下一代、种群繁殖后重复上述操作的方法,逐渐逼近最优值。自适应遗传算法通过改变不同适应度值下的交叉和变异几率,能提升计算效率并加快算法的收敛速度。
1.自适应遗传算法的实现步骤
(1)编码
编码是用一组有序数列来表征自变量,类似于基因来表征一个生物。只不过不同于自然界中的生物,自然界中大部分生物的基因是双链,而在算法计算中自变量的基因是单链,这样便于表征、杂交和变异。
编码按代码数制类型不同主要分为二进制编码和十进制编码,二进制编码格式整齐,易于理解;但十进制编码容易观察且不用数制转换,故本文采用十进制数编码。例如对于自变量x∈(a , b)(其中a , b为给定的自变量区间,且b > a),可将(b - a)分为( ≥2)份,每个数字用一个( ≥2)位数字序列表示,这个数字序列即为基因编码。
(2)解码
解码是运算过程中需要将基因反变换成自变量的实际大小进行处理而进行的编码还原,即基因乘以解码器即可将基因转化为实际数值。对于上例中的编码,解码器选择如下:
[   ……
(3)交配(也叫交叉)
交配是基因之间以一定几率相互交叉而改变原来的序列。方法如下:
设初始种群中随机产生了两个基因分别为:
(,,……,)    初始个体1
(,,……,)    初始个体2

用轮盘法则随机确定一个1到之间的整数(1<<)作为交叉位数,然后交换该整数位以后的数字,交叉后的基因分别如下:
(,,……,,,……,) 交配后个体1
(,,……,,,……,) 交配后个体2

交配是遗传算法区别于其他算法的主要特征之一,交配效果也直接影响算法结果的有效性。交配概率太大会破坏种群现有结构,丢失优异个体;交配概率太小种群进化较慢,收敛速度慢,不易找到最优解。虽然传统的遗传算法根据大量实例给出一个经验值范围0.4-0.99,但显然任何一个固定的交配值都是不公平的。一个适应度大的个体应该尽可能地保留到下一代,而一个适应度小的个体应想法重复利用,否则在筛选中依然会被筛选掉,从而丢失一部分计算价值。所以基于此想法,研究人员提出了自适应交配方法,即根据适应度的大小自动调节交配几率,具体方法如下:
对于任意一代的种群中,优先算出该种群的平均适应度和最大适应度,通过-构建自适应指标。当判断任意个体时,计算该个体的适应度f后,通过公式
(-f)/(-)   f≥
=                                             (2.2)
f<

其中为该个体的自适应交叉概率;一般令=1,即适应度小于平均值的个体直接交叉;初始时可取0.5,根据寻优结果另行调整。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

碎月静豪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值