【python】——数据分布拟合工具包fitter

本文介绍了如何使用Python库Fitter进行数据拟合和分布分析。首先,通过`pip install fitter`安装Fitter。接着,利用Scipy生成服从Gamma分布的样本数据。然后,创建Fitter实例并调用`fit()`函数进行拟合,最后通过`summary()`展示拟合结果。参数包括可自定义的分布、数据截断范围、超时时间和直方图分段数,帮助用户更精确地分析数据分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.安装

pip(3) install fitter

2.例子

# 数据生成
from scipy import stats
data = stats.gamma.rvs(2, loc=1.5, scale=2, size=10000) # 通过scipy生成服从gamma分布的10000个样本
# 拟合分布
from fitter import Fitter
f = Fitter(data)  # 创建Fitter类
f.fit()  # 调用fit函数拟合分布
f.summary()  # 输出拟合结果

3.参数说明

classfitter.fitter.Fitter(data, xmin=None, xmax=None, bins=100, distributions=None, timeout=30, density=True)

distributions: 待拟合的分布,若不指定则会遍历上面提到的80个分布(会耗时较长)。eg. distributions = [‘gamma’, ‘erlang’];
xmin, xmax:截断样本数据的范围,小于xmin或大于xmax的数据会被忽略;
timeout:单个分布拟合的最大时长,超过该值改分布会被遗弃,默认值为30,单位为秒。一般使用时我会将其调大为100秒,避免一些合适的分布被略去。
density通常设为True,bins为绘制直方图(histogram)时的分段数、默认不改,当有outlier时可适当扩大。

摘自知乎:https://zhuanlan.zhihu.com/p/420047068

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值