剑指Offer47-礼物的最大价值
每日几道leetcode刷刷题!
剑指Offer47-礼物的最大价值
题目描述
输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。
示例 1:
输入:arr = [3,2,1], k = 2
输出:[1,2] 或者 [2,1]
代码
1.排序法
比较简单以及直观
class Solution:
def getLeastNumbers(self, arr: List[int], k: int) -> List[int]:
arr.sort()
return arr[:k]
时间复杂度:O(nlog n),其中 n 是数组 arr 的长度。算法的时间复杂度即排序的时间复杂度。
空间复杂度:O(log n),排序所需额外的空间复杂度为 O(log n)
堆
我们用一个大根堆实时维护数组的前 k 小值。首先将前 k 个数插入大根堆中,随后从第 k+1 个数开始遍历,如果当前遍历到的数比大根堆的堆顶的数要小,就把堆顶的数 (hp[0]) 弹出,再插入当前遍历到的数。由于 C++ 语言中的堆(即优先队列)为大根堆,我们可以这么做。而 Python 语言中的堆为小根堆,因此我们要对数组中所有的数取其相反数,才能使用小根堆维护前 k 小值。
class Solution:
def getLeastNumbers(self, arr: List[int], k: int) -> List[int]:
if k == 0:
return list()
hp = [-x for x in arr[:k]]
heapq.heapify(hp) #建立大根堆
for i in range(k, len(arr)):
if -hp[0] > arr[i]: #遍历到的数比大根堆的堆顶的数要小
heapq.heappop(hp) #堆顶的数 (hp[0]) 弹出
heapq.heappush(hp, -arr[i]) #插入当前遍历到的数
ans = [-x for x in hp]
return ans
时间复杂度:O(nlog k),其中 n 是数组 arr 的长度。由于大根堆实时维护前 k 小值,所以插入删除都是 O(logk) 的时间复杂度,最坏情况下数组里 n 个数都会插入,所以一共需要 O(nlogk) 的时间复杂度。
空间复杂度:O(k),因为大根堆里最多 k 个数
总结
参考https://leetcode-cn.com/problems/zui-xiao-de-kge-shu-lcof/solution/zui-xiao-de-kge-shu-by-leetcode-solution/