二分图与网络流

二分图如果一张无向图的nnn(n≥2)(n≥2)(n≥2) 个节点可以分成 A,BA,BA,B 两个非空集合,其中 A⋂BA \bigcap BA⋂B为空,并且在同一集合内的点之间都没有边相连,那么称这张无向图为一张二分图。 A,BA,BA,B分别称为二分图的左部和右部。二分图判定无向图是二分图⇔⇔⇔图中无奇环(长度为奇数的环)使用染色法,一个顶点涂黑色,另一个顶点涂白色,若搜到颜色...
摘要由CSDN通过智能技术生成

二分图

  • 如果一张无向图的 n n n ( n ≥ 2 ) (n≥2) (n2) 个节点可以分成 A , B A,B A,B 两个非空集合,其中 A ⋂ B A \bigcap B AB为空,并且在同一集合内的点之间都没有边相连,那么称这张无向图为一张二分图。 A , B A,B A,B分别称为二分图的左部和右部。

二分图判定

  • 无向图是二分图 ⇔ ⇔ 图中无奇环(长度为奇数的环)
  • 使用染色法,一个顶点涂黑色,另一个顶点涂白色,若搜到颜色不相符则不是二分图,否则是;
bool dfs_(int u,int color) {
   
   c[u]=color;
   for(int i=head[u];~i;i=e[i].nxt) {
   
   	int v=e[i].v;
   	if(c[v]&&c[v]==color) return false;
   	if(!c[v]&&!dfs_(v,3-color)) return false;
   } 
   return true;
}

inline pd_() {
   
   memset(c,0,sizeof(c));
   for(int i=1;i<=n;++i) {
   
   	if(!c[i]&&!dfs_(i,1))  return false;
   }
   return true;
}

关押罪犯

  • 按照敌人的敌人是朋友的原则,用并查集实现
#include <bits/stdc++.h>
using namespace std;
#define maxn 20010
#define maxm 100010

int n,m,f[maxn<<1];
struct node {
   
   int x,y,z;
}e[maxm];

inline bool cmp_(node aa,node bb) {
   
   return aa.z > bb.z;
}

int find_(int x) {
   
   if(f[x]==x) return x;
   return f[x]=find_(f[x]);
}

void readda_() {
   
   n=read_();m=read_();
   for(int i=1;i<=m;++i) {
   
   	e[i].x=read_();e[i].y=read_();e[i].z=read_();
   }sort(e+1,e+m+1,cmp_);
   for(int i=0;i<=(n<<1);++i) f[i]=i;
   for(int i=1;i<=m;++i) {
   
   	int x=find_(e[i].x),y=find_(e[i].y);
   	if(x==y) {
   printf("%d",e[i].z);return;}
   	int xx=find_(e[i].x+n),yy=find_(e[i].y+n);
   	f[x]=yy;f[y]=xx;
   }
   printf("0");
}
  • 也可以用二分 + + +二分图判定来做
  • 二分最小值,将怒气值大于 m i d mid mid的两人连边,看能否将两人分开,也就是能否形成二分图
#include <bits/stdc++.h>
using namespace std;
#define maxn 20010
#define maxm 100010

int n,m,size=0,head[maxn],vis[maxn];
struct node {
   
	int x,y,z;
}AKIOI[maxm];
struct edge {
   
	int v,nxt;
}e[maxm<<1];

inline bool cmp_(node aa,node bb) {
   
	return aa.z > bb.z;
}

inline void add_(int u,int v) {
   
	e[++size].v=v;
	e[size].nxt=head[u];
	head[u]=size;
}

bool dfs_(int u,int color) {
   
	vis[u]=color;
	for(int i=head[u];~i;i=e[i].nxt) {
   
		int v=e[i].v;
		if(vis[v]==color) return false;
		if(vis[v]==-1&&!dfs_(v,color^1)) return false;
	}
	return true;
}

inline bool pd_(int now) {
   
	memset(head,-1,sizeof(head));
	size=0;
	for(int i=1;i<=m;++i) {
   
		if(AKIOI[i].z<=now) break;
		add_(AKIOI[i].x,AKIOI[i].y);
		add_(AKIOI[i].y,AKIOI[i].x);
	}
	memset(vis,-1,sizeof(vis));
	for(int i=1;i<=n;++i) {
   
		if(vis[i]==-1&&!dfs_(i,1)) return false;
	}
	return true;
}

void readda_() {
   
	n=read_();m=read_();
	for(int i=1;i<=m;++i) {
   
		AKIOI[i].x=read_();AKIOI[i].y=read_();AKIOI[i].z=read_();
	}sort(AKIOI+1,AKIOI+1+m,cmp_);
	int l=0,r=AKIOI[1].z,mid;
	while(l<=r) {
   
		mid=(l+r)>>1;
		if(pd_(mid)) r=mid-1;
		else l=mid+1;
	}
	printf("%d",l);
}

二分图最大匹配

图的匹配定义

  • 两条边都没有公共端点的边的集合被称为图的一组匹配。
  • 即每个点只有一条连边

二分图最大匹配

  • 在二分图中,包含边数最多的一组匹配被称为二分图的最大匹配

其他相关定义

  • 对于任意一组匹配 S S S(边集),属于 S S S的边被称为匹配边,不属于 S S S的边被称为非匹配边。
  • 匹配边的端点被称为匹配点,其他节点被称为非匹配点。
  • 如果二分图中存在一条连接两个非匹配点的路径 p a t h path path ,使得非匹配边与匹配边在 p a t h path path上交替出现,那么称 p a t h path path 是匹配 S S
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值