自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 【mmaction2实战】使用mmaction可视化注意力热图

假设已经配置好mmatcion的环境,用其中的代码框架训练了自己的数据集,获得了best_model,相关权重,现在要添加可视化说明。需要剩下两种模型可视化的可以慢慢debug尝试一下,。

2025-09-28 19:19:28 713

原创 谷歌邮箱创建【无电话验证】

2025-09-17 11:17:53 248

原创 本地访问服务器上 Jupyter Notebook — 原理与实操方法

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档。

2025-09-05 14:58:03 343

原创 【mmaction2实战】使用mmaction训练私域数据集

本文介绍了如何使用MMAction2框架进行视频动作识别训练。首先确保已配置好运行环境,然后按照官方教程准备Kinetics-400 tiny数据集并修改配置文件路径。文章提供了可运行的TSN模型配置文件,包括数据预处理流程、训练参数和模型结构调整。同时介绍了数据集可视化、学习率计划查看等工具使用方法,并给出了训练启动命令。最后提到在VSCode中配置debug环境的方法,便于调试代码。整个过程涵盖了从数据准备到模型训练的关键步骤。

2025-07-22 15:14:01 737

原创 【mmaction2】安装问题及解决版本

本文介绍了如何成功安装MMAction2深度学习框架,并解决安装过程中遇到的常见问题。作者通过创建Python 3.9环境、配置匹配CUDA版本的PyTorch组件、使用mim安装MMCV和MMEngine(注意控制版本冲突),最终完成了MMAction2的源码安装。特别强调了解决numpy版本冲突的过程,建议将numpy降至1.25.0并调整相关依赖。最后通过下载预训练权重和运行示例代码验证了安装成功。该指南为希望在多视觉模型测试中使用MMAction2的研究者提供了完整的配置方案。

2025-07-10 16:53:00 549

原创 windows ssh连接ubuntu系统,配置教程

摘要:本文记录了解决台式电脑与服务器不在同一网段导致无法SSH连接的问题。通过检查两台设备能互相ping通后,详细介绍了在Ubuntu服务器上配置SSH服务的步骤:更新系统、安装SSH组件、修改配置文件允许root登录、设置root密码,最后使用FinalShell成功建立连接。整个过程提供了清晰的命令行操作和配置截图,最终实现了跨网段的SSH远程访问。(149字)

2025-07-01 18:02:31 396

原创 【大模型部署】基于医疗文本数据集的LLM微调实战

在本项目中,将学习如何微调 AI 模型。我们将使用 LLM Starling,使其成为医学领域的专家,能够指导和诊断症状。微调是训练现有 AI 模型的过程,该模型在通用数据集上进行训练,以使其适应新的数据集或目标。这使得模型能够更有效地处理新数据集的特定特征。训练 AI 模型时,会对其进行优化以学习识别训练数据中的模式和关系。但是,如果模型是在与要应用模型的数据集没有直接关系的数据集上训练的,则它在处理新数据集的特定特征方面可能不那么有效。这就是微调发挥作用的地方。

2025-04-18 19:57:18 1285

原创 【Viusal studio新版本与cuda不兼容】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档。

2024-11-28 16:51:43 8409 2

原创 【如何在yolov8分类任务中更改损失函数的类别权重】-针对样本不平衡问题

对于YOLOv8的分类任务,更改损失函数的类别权重通常涉及到对交叉熵损失函数(CrossEntropyLoss)的使用,因为分类任务通常使用交叉熵损失来衡量预测概率分布与真实标签之间的差异。在PyTorch中,是用于多分类任务的标准损失函数,它自动包含了Softmax层,并且可以通过weight参数来指定每个类别的权重。以下是如何在YOLOv8的分类任务中更改损失函数的类别权重的步骤提示:以下是本篇文章正文内容,下面案例可供参考。

2024-11-22 16:37:24 2503 4

原创 【使用YOLOv8下的RT-DETR训练自己的数据集】

对疟原虫细胞医学显微图像进行目标检测,使用RT-DETR对其进行检测训练,将原数据集分为训练集和验证集,测试集有单独的样本(不纳入训练)

2024-08-22 11:22:22 2795 3

原创 使用vscode连接docker

实习的公司提供了docker接口,配置vscode环境干活(以yolov8为例)。提示:以下是本篇文章正文内容,下面案例可供参考。

2024-07-08 11:03:44 1457 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除