引入
最近在补一些机器学习的理论基础,因此把常用的符号做一个总结。当然,不同的子方向可能有些许区别。
1 标量向量及矩阵
符号 | 含义 | 代码 |
---|
a
,
b
,
c
,
α
,
β
,
λ
a,b,c,\alpha,\beta,\lambda
a,b,c,α,β,λ | 标量 | a,b,c,\alpha,\beta,\lambda |
x
,
y
,
z
\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}
x,y,z | 向量 | \boldsymbol{x},\boldsymbol{y},\boldsymbol{z} |
x
,
y
,
z
\mathbf{x},\mathbf{y},\mathbf{z}
x,y,z | 标量 | \mathbf{x},\mathbf{y},\mathbf{z} |
B
=
(
b
1
,
b
2
,
b
3
)
B=(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)
B=(b1,b2,b3) | 有序元组 | B=(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3) |
B
=
[
b
1
,
b
2
,
b
3
]
\boldsymbol{B}=[\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3]
B=[b1,b2,b3] | 列向量水平堆叠的矩阵 | \boldsymbol{B}=[\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3] |
粗斜体之分倒不是关键,这个可以看方向和喜好,最重要的是全文统一。
下面介绍向量矩阵的一些或者关系运算:
符号 | 含义 | 代码 |
---|
x
T
,
A
T
\boldsymbol{x}^T,\boldsymbol{A}^T
xT,AT | 转置 | \boldsymbol{x}^T, \boldsymbol{A}^T |
A
−
1
\boldsymbol{A}^{-1}
A−1 | 求逆 | \boldsymbol{A}^{-1} |
⟨
x
,
y
⟩
\langle\boldsymbol{x}, \boldsymbol{y}\rangle
⟨x,y⟩ | 内积 | \langle\boldsymbol{x}, \boldsymbol{y}\rangle |
x
T
y
\boldsymbol{x}^T\boldsymbol{y}
xTy | 点积 | \boldsymbol{x}^T\boldsymbol{y} |
I
m
\boldsymbol{I}_m
Im |
m
×
m
m\times{m}
m×m的单位矩阵 | \boldsymbol{I}_m |
0
m
,
n
\mathbf{0}_{m,n}
0m,n |
m
×
n
m\times{n}
m×n的零矩阵 | \mathbf{0}_{m,n} |
1
m
,
n
\mathbf{1}_{m,n}
1m,n |
m
×
n
m\times{n}
m×n的一矩阵 | |
e
i
\boldsymbol{e}_i
ei | 标准向量 (矩阵的第
i
i
i列) | \boldsymbol{e}_i |
rk
(
A
)
\text{rk}(\boldsymbol{A})
rk(A) | 矩阵的秩 | \text{rk}(\boldsymbol{A}) |
tr
(
A
)
\text{tr}(A)
tr(A) | 矩阵的迹 | \text{tr}(A) |
det
(
A
)
\text{det}(A)
det(A) | 矩阵的行列式 | \text{det}(A) |
∣
⋅
∣
\mid\cdot\mid
∣⋅∣ | 绝对值、行列式或者模 | \mid\cdot\mid |
∥
⋅
∥
\|\cdot\|
∥⋅∥ | 欧氏距离 | |\cdot\ |
x
⊥
y
\boldsymbol{x}\perp\boldsymbol{y}
x⊥y | 向量垂直 | \boldsymbol{x}\perp\boldsymbol{y} |
V
V
V | 向量空间 | |
V
⊥
V^\perp
V⊥ | 向量空间的正交补 | |
θ
\boldsymbol{\theta}
θ | 参数向量 | |
Cov
X
,
Y
[
x
,
y
]
\text{Cov}_{X,Y}[\boldsymbol{x},\boldsymbol{y}]
CovX,Y[x,y] | 向量的协方差 | |
2 自然数
符号 | 含义 | 代码 |
---|
Z
,
N
\mathbb{Z},\mathbb{N}
Z,N | 整数和自然数 | \mathbb{Z},\mathbb{N} |
R
,
C
\mathbb{R},\mathbb{C}
R,C | 实数和复数 | \mathbb{R},\mathbb{C} |
R
n
\mathbb{R}^n
Rn |
n
n
n维实数向量 | \mathbb{R}^n |
3 定义
符号 | 含义 | 代码 |
---|
∀
x
\forall{x}
∀x | 通用量词:存在
x
x
x |
∀
x
\forall{x}
∀x |
∃
x
\exists{x}
∃x | 存在量词:存在
x
x
x | \exists{x} |
a
:
=
b
a:=b
a:=b |
a
a
a由
b
b
b定义 | |
a
=
:
b
a=:b
a=:b |
b
b
b由
a
a
a定义 | |
a
∝
b
a\propto{b}
a∝b |
a
a
a正比于
b
b
b,即
a
=
a=
a=常量
⋅
b
\cdot{b}
⋅b | a\propto{b} |
⇔
\Leftrightarrow
⇔ | 当且仅当 | \Leftrightarrow |
⇒
\Rightarrow
⇒ | 暗含 | \Rightarrow |
4 集合
符号 | 含义 | 代码 |
---|
A
,
C
\mathcal{A},\mathcal{C}
A,C | 集合 | \mathcal{A},\mathcal{C} |
a
∈
A
a\in\mathcal{A}
a∈A | 集合元素 | a\in\mathcal{A} |
a
⊂
A
a\subset{A}
a⊂A | 子集 | a\subset{A} |
∅
\emptyset
∅ | 空集 | \emptyset |
A
\mathcal{A}
A\
B
\mathcal{B}
B | 集合相减 |
A
\mathcal{A}
A\
B
\mathcal{B}
B |
5 导数
符号 | 含义 | 代码 |
---|
∂
f
∂
x
\frac{\partial{f}}{\partial{x}}
∂x∂f | 求偏导 | \frac{\partial{f}}{\partial{x}} |
d
f
d
x
\frac{\text{d}f}{\text{d}x}
dxdf | 导数 | |
6 函数
符号 | 含义 | 代码 |
---|
g
∘
f
g\circ{f}
g∘f | 复合函数:
g
g
g在
f
f
f之后 | g\circ{f} |
f
∗
=
min
x
f
(
x
)
f_*=\min_xf(x)
f∗=minxf(x) | 函数
f
f
f的最小函数值 | |
x
∗
∈
arg min
x
f
(
x
)
x_*\in\argmin_{x}f(x)
x∗∈xargminf(x) | 使得
f
f
f最小的值 | |
7 概率
符号 | 含义 | 代码 |
---|
V
X
[
x
]
\mathbb{V}_X[x]
VX[x] |
x
x
x关于随机变量
X
X
X的方差 | |
E
X
[
x
]
\mathbb{E}_X[x]
EX[x] |
x
x
x关于随机变量
X
X
X的期望 | |
X
∼
p
X\sim p
X∼p | 随机变量
X
X
X根据
p
p
p分布 | |
N
(
μ
,
∑
)
\mathcal{N}(\mu,\sum)
N(μ,∑) | 高斯分布 | |
参考文献
【1】Marc Peter Deisenroth et al., Mathematics for machine learning.