机器学习中你不得不知道的数学符号表示

引入

  最近在补一些机器学习的理论基础,因此把常用的符号做一个总结。当然,不同的子方向可能有些许区别。

1 标量向量及矩阵

符号含义代码
a , b , c , α , β , λ a,b,c,\alpha,\beta,\lambda a,b,c,α,β,λ标量a,b,c,\alpha,\beta,\lambda
x , y , z \boldsymbol{x},\boldsymbol{y},\boldsymbol{z} x,y,z向量\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}
x , y , z \mathbf{x},\mathbf{y},\mathbf{z} x,y,z标量\mathbf{x},\mathbf{y},\mathbf{z}
B = ( b 1 , b 2 , b 3 ) B=(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3) B=(b1,b2,b3)有序元组B=(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)
B = [ b 1 , b 2 , b 3 ] \boldsymbol{B}=[\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3] B=[b1,b2,b3]列向量水平堆叠的矩阵\boldsymbol{B}=[\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3]

  粗斜体之分倒不是关键,这个可以看方向和喜好,最重要的是全文统一
  下面介绍向量矩阵的一些或者关系运算:

符号含义代码
x T , A T \boldsymbol{x}^T,\boldsymbol{A}^T xT,AT转置\boldsymbol{x}^T, \boldsymbol{A}^T
A − 1 \boldsymbol{A}^{-1} A1求逆\boldsymbol{A}^{-1}
⟨ x , y ⟩ \langle\boldsymbol{x}, \boldsymbol{y}\rangle x,y内积\langle\boldsymbol{x}, \boldsymbol{y}\rangle
x T y \boldsymbol{x}^T\boldsymbol{y} xTy点积\boldsymbol{x}^T\boldsymbol{y}
I m \boldsymbol{I}_m Im m × m m\times{m} m×m的单位矩阵\boldsymbol{I}_m
0 m , n \mathbf{0}_{m,n} 0m,n m × n m\times{n} m×n的零矩阵\mathbf{0}_{m,n}
1 m , n \mathbf{1}_{m,n} 1m,n m × n m\times{n} m×n的一矩阵
e i \boldsymbol{e}_i ei标准向量 (矩阵的第 i i i列)\boldsymbol{e}_i
rk ( A ) \text{rk}(\boldsymbol{A}) rk(A)矩阵的秩\text{rk}(\boldsymbol{A})
tr ( A ) \text{tr}(A) tr(A)矩阵的迹\text{tr}(A)
det ( A ) \text{det}(A) det(A)矩阵的行列式\text{det}(A)
∣ ⋅ ∣ \mid\cdot\mid 绝对值、行列式或者模\mid\cdot\mid
∥ ⋅ ∥ \|\cdot\| 欧氏距离|\cdot\
x ⊥ y \boldsymbol{x}\perp\boldsymbol{y} xy向量垂直\boldsymbol{x}\perp\boldsymbol{y}
V V V向量空间
V ⊥ V^\perp V向量空间的正交补
θ \boldsymbol{\theta} θ参数向量
Cov X , Y [ x , y ] \text{Cov}_{X,Y}[\boldsymbol{x},\boldsymbol{y}] CovX,Y[x,y]向量的协方差

2 自然数

符号含义代码
Z , N \mathbb{Z},\mathbb{N} Z,N整数和自然数\mathbb{Z},\mathbb{N}
R , C \mathbb{R},\mathbb{C} R,C实数和复数\mathbb{R},\mathbb{C}
R n \mathbb{R}^n Rn n n n维实数向量\mathbb{R}^n

3 定义

符号含义代码
∀ x \forall{x} x通用量词:存在 x x x ∀ x \forall{x} x
∃ x \exists{x} x存在量词:存在 x x x\exists{x}
a : = b a:=b a:=b a a a b b b定义
a = : b a=:b a=:b b b b a a a定义
a ∝ b a\propto{b} ab a a a正比于 b b b,即 a = a= a=常量 ⋅ b \cdot{b} ba\propto{b}
⇔ \Leftrightarrow 当且仅当\Leftrightarrow
⇒ \Rightarrow 暗含\Rightarrow

4 集合

符号含义代码
A , C \mathcal{A},\mathcal{C} A,C集合\mathcal{A},\mathcal{C}
a ∈ A a\in\mathcal{A} aA集合元素a\in\mathcal{A}
a ⊂ A a\subset{A} aA子集a\subset{A}
∅ \emptyset 空集\emptyset
A \mathcal{A} A\ B \mathcal{B} B集合相减 A \mathcal{A} A\ B \mathcal{B} B

5 导数

符号含义代码
∂ f ∂ x \frac{\partial{f}}{\partial{x}} xf求偏导\frac{\partial{f}}{\partial{x}}
d f d x \frac{\text{d}f}{\text{d}x} dxdf导数

6 函数

符号含义代码
g ∘ f g\circ{f} gf复合函数: g g g f f f之后g\circ{f}
f ∗ = min ⁡ x f ( x ) f_*=\min_xf(x) f=minxf(x)函数 f f f的最小函数值
x ∗ ∈ arg min ⁡ x f ( x ) x_*\in\argmin_{x}f(x) xxargminf(x)使得 f f f最小的值

7 概率

符号含义代码
V X [ x ] \mathbb{V}_X[x] VX[x] x x x关于随机变量 X X X的方差
E X [ x ] \mathbb{E}_X[x] EX[x] x x x关于随机变量 X X X的期望
X ∼ p X\sim p Xp随机变量 X X X根据 p p p分布
N ( μ , ∑ ) \mathcal{N}(\mu,\sum) N(μ,)高斯分布

参考文献

【1】Marc Peter Deisenroth et al., Mathematics for machine learning.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值