引入
目标信号的威胁感知是认知电子战的基础,是从茫茫信号海洋中发掘敌方信号的措施。本节主要介绍目标侦察信号处理。
注:认知电子战的机器学习理论无外乎有监督、半监督、无监督、分类、聚类、强化学习、深度学习等。对此,本文均不做细节介绍。
1 主要任务
1)目标侦察信号处理的一般流程如下,本节主要介绍信号分选、辐射源识别
2)目标侦察系统所面临的电磁信号环境具有以下特点:
∙
\bull
∙ 信号来源广泛、样式繁多
∙
\bull
∙ 信号的传播路径复杂
∙
\bull
∙ 信号的频段宽、密度大
∙
\bull
∙ 信号的实时性高
2 信号分选
2.1 雷达信号的分选识别
1)主要依据:雷达信号的脉冲描述字 (PDW) 序列,包括脉冲到达角、载频、脉冲到达时间、脉冲宽度、脉冲幅度等。其实就是雷达收到的信号,你需要提取哪些出来哇
2)PDW序号通常包含3个部分:无用数据、辐射源数据、可能存在的未知辐射源数据。这个倒好理解,不是说接收到的数据就是你需要的,比如民用通信啥的。我们真正关心的是敌方的信号,如果他们有新的技术,那可能就是未知的、你需要识别的。在机器学习中就有专门的研究,例如未知未知的探索。就好比新冠刚出来的时候,这种未知的新型病毒,在未识别之前,还是蛮危险的
3)雷达信号分选的目的:从原始PDW序列中将其包含的各个部分区分开
4)已知辐射信号分选:
∙
\bull
∙ 预分选:通过辐射源参数匹配进行处理,具体如下:
⋆
\star
⋆ 取PDW中的脉冲宽度、载频、脉内调制特征作为匹配特征
⋆
\star
⋆ 将3个参数与辐射源库中的每一个已知辐射源参数进行匹配
⋆
\star
⋆ 匹配成功的加入同一个预分选类中,并建立一个编号
⋆
\star
⋆ 均不匹配则作为一个未知类
⋆
\star
⋆ 点评:简单的匹配法,受选取特征、已知库及匹配算法的影响
∙
\bull
∙ 主分选:对编号的预分选类进一步处理,具体如下:
⋆
\star
⋆ 找到辐射库中相应辐射源的类型和脉冲重复间隔 (PRI)
⋆
\star
⋆ 根据PRI进行序列搜索,并分离已知辐射源信号
⋆
\star
⋆ 匹配完毕后,余下的脉冲与其他辐射源匹配
⋆
\star
⋆ 点评:依然是匹配
5)未知辐射源分选
聚类、累积差值直方图、序列差值直方图、PRI变换等。
2.2 通信信号的盲源分离
1)盲源分离 (BSS):又称盲信号分离,指在信号的理论模型和源信号无法精确获知精确获知的情况下,如何从混叠信号中分离各源信号的过程
2)一般思想:利用通信混合信号所蕴含的统计特性,从一组传感器接收到的观测数据中分离出不可直接测量的源信号,或寻找一种具有物理意义的新的观测信号的表示形式
3)常用方法:快速独立成分分析 (Fast ICA):
∙
\bull
∙ 基本思想:由观测信号
X
X
X,确定线性变换矩阵
W
W
W,依据一定的优化算法,使得变换后的输出信号
Y
Y
Y相关性最小,即分量之间相互独立,具体步骤如下:
⋆
\star
⋆ 1)对观测信号去均值
⋆
\star
⋆ 2)对去均值后的观测信号白化处理
⋆
\star
⋆ 3)执行ICA算法
∙
\bull
∙ Python的sklean库的调用如下:
from sklearn.datasets import load_digits
from sklearn.decomposition import FastICA
X, _ = load_digits(return_X_y=True)
ica = FastICA(n_components=7, random_state=0, max_iter=10000, tol=0.01)
X_ica = ica.fit_transform(X)
print(X.shape)
print(X_ica.shape)
∙
\bull
∙ 其他方法还包括:
⋆
\star
⋆ 矩阵联合近似对角化 (JADE)
⋆
\star
⋆ 集成模型模态分解 (EEMD)
3 辐射源识别
1)定义:将被测辐射源与预先积累的参数库进行比对以确认辐射源的过程
2)分类:
∙
\bull
∙ 基于机器学习的辐射源识别方法
∙
\bull
∙ 基于指纹特征的辐射源识别方法
4 传统方法的局限
1)威胁感知的粒度较粗糙
2)对先验知识的依赖较大
3)对未知目标信号的感知难度加大