认知电子战 (2.1):目标侦察信号处理

本文探讨了在复杂电磁环境中,目标侦察信号处理的关键任务,如雷达信号的分选识别,利用PDW特征和盲源分离技术(如FastICA)处理通信信号。特别关注了辐射源识别的机器学习方法和传统方法的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引入

  目标信号的威胁感知是认知电子战的基础,是从茫茫信号海洋中发掘敌方信号的措施。本节主要介绍目标侦察信号处理。
  注:认知电子战的机器学习理论无外乎有监督、半监督、无监督、分类、聚类、强化学习、深度学习等。对此,本文均不做细节介绍。
  

1 主要任务

  1)目标侦察信号处理的一般流程如下,本节主要介绍信号分选、辐射源识别

  2)目标侦察系统所面临的电磁信号环境具有以下特点:
   ∙ \bull 信号来源广泛、样式繁多
   ∙ \bull 信号的传播路径复杂
   ∙ \bull 信号的频段宽、密度大
   ∙ \bull 信号的实时性高

2 信号分选

2.1 雷达信号的分选识别

  1)主要依据:雷达信号的脉冲描述字 (PDW) 序列,包括脉冲到达角载频脉冲到达时间脉冲宽度脉冲幅度等。其实就是雷达收到的信号,你需要提取哪些出来哇

  2)PDW序号通常包含3个部分无用数据辐射源数据可能存在的未知辐射源数据。这个倒好理解,不是说接收到的数据就是你需要的,比如民用通信啥的。我们真正关心的是敌方的信号,如果他们有新的技术,那可能就是未知的、你需要识别的。在机器学习中就有专门的研究,例如未知未知的探索。就好比新冠刚出来的时候,这种未知的新型病毒,在未识别之前,还是蛮危险的

  3)雷达信号分选的目的:从原始PDW序列中将其包含的各个部分区分开

  4)已知辐射信号分选
   ∙ \bull 预分选:通过辐射源参数匹配进行处理,具体如下:
     ⋆ \star 取PDW中的脉冲宽度、载频、脉内调制特征作为匹配特征
     ⋆ \star 将3个参数与辐射源库中的每一个已知辐射源参数进行匹配
     ⋆ \star 匹配成功的加入同一个预分选类中,并建立一个编号
     ⋆ \star 均不匹配则作为一个未知类
     ⋆ \star 点评:简单的匹配法,受选取特征、已知库及匹配算法的影响
   ∙ \bull 主分选:对编号的预分选类进一步处理,具体如下:
     ⋆ \star 找到辐射库中相应辐射源的类型和脉冲重复间隔 (PRI)
     ⋆ \star 根据PRI进行序列搜索,并分离已知辐射源信号
     ⋆ \star 匹配完毕后,余下的脉冲与其他辐射源匹配
     ⋆ \star 点评:依然是匹配

  5)未知辐射源分选
  聚类、累积差值直方图、序列差值直方图、PRI变换等。

2.2 通信信号的盲源分离

  1)盲源分离 (BSS):又称盲信号分离,指在信号的理论模型和源信号无法精确获知精确获知的情况下,如何从混叠信号中分离各源信号的过程

  2)一般思想:利用通信混合信号所蕴含的统计特性,从一组传感器接收到的观测数据中分离出不可直接测量的源信号,或寻找一种具有物理意义的新的观测信号的表示形式

  3)常用方法:快速独立成分分析 (Fast ICA):
   ∙ \bull 基本思想:由观测信号 X X X,确定线性变换矩阵 W W W,依据一定的优化算法,使得变换后的输出信号 Y Y Y相关性最小,即分量之间相互独立,具体步骤如下:
     ⋆ \star 1)对观测信号去均值
     ⋆ \star 2)对去均值后的观测信号白化处理
     ⋆ \star 3)执行ICA算法
   ∙ \bull Python的sklean库的调用如下:

from sklearn.datasets import load_digits
from sklearn.decomposition import FastICA


X, _ = load_digits(return_X_y=True)
ica = FastICA(n_components=7, random_state=0, max_iter=10000, tol=0.01)
X_ica = ica.fit_transform(X)
print(X.shape)
print(X_ica.shape)

   ∙ \bull 其他方法还包括:
     ⋆ \star 矩阵联合近似对角化 (JADE)
     ⋆ \star 集成模型模态分解 (EEMD)

3 辐射源识别

  1)定义:将被测辐射源与预先积累的参数库进行比对以确认辐射源的过程

  2)分类
   ∙ \bull 基于机器学习的辐射源识别方法
   ∙ \bull 基于指纹特征的辐射源识别方法

4 传统方法的局限

  1)威胁感知的粒度较粗糙

  2)对先验知识的依赖较大

  3)对未知目标信号的感知难度加大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值