论文120:Giga-SSL: Self-supervised learning for gigapixel images (2023, CVPR, 开源)

1 要点

题目:用于千兆像素图像的自监督学习 (Giga-SSL: Self-Supervised Learning for Gigapixel Images)

代码:https://github.com/trislaz/gigassl

研究目的
现有的WSI分类方法依赖于有限的标注数据集,这可能导致模型过拟合和性能不足。同时,大量未标注的WSI数据集的可用性不断增加,但这些数据在现有的自监督学习 (SSL) 框架下未能充分利用。因此,拟提出了一种在WSI标签下进行SSL的策略,以利用大量未标注的WSI数据并在小数据集上提高分类性能。

关键技术

  1. Giga-SSL框架
    一个转为WSI设计的自监督学习框架,能够在不使用任何标注数据的情况下,仅使用WSI图像来学习包表示;
  2. SparseConvMIL架构
    用于WSI分类的扩展,结合了ResNet网络作为区块嵌入器和池化函数,以及子流形卷积网络来处理稀疏数据;
  3. 对比损失(Contrastive Loss)
    在SSL使用,通过优化正样本对的相似度来训练模型;

数据集

  • TCGA

2 方法

2.1 算法设计

X X X表示一个WSI,算法的骨架是扩展的SparseConvMIL架构

  • 包含一个 ResNet网络 f θ f_θ fθ (例如ResNet18),它在第四个残差块的开始处被切成两个连续的部分:
    • 第一部分:实例 (tile) 嵌入器 e θ 1 e_{θ_1} eθ1,由 f θ f_θ fθ的从输入层到第四个残差块的部分组成;
    • 第二部分:池化函数KaTeX parse error: Expected '}', got 'EOF' at end of input: p_{θ_2,由 f θ f_θ fθ的余下层组成,包括后续的残差块直到全连接层。该部分已经转换为子流形卷积网络,以便它可以处理稀疏数据。
  • 对于任何图像 i i iResNet嵌入为:
    f θ ( i ) = p θ 2 ( e θ 1 ( i ) ) ∈ R 512 f_θ(i) = p_{θ_2}(e_{θ_1}(i)) \in \mathbb{R}^{512} fθ(i)=pθ2(eθ1(i))R512

算法的训练过程包括6个顺序步骤,以提取WSI表示,如图1。

  1. 在实例级别设置两个WSI增强函数 t 1 t_1 t1 t 2 t_2 t2,其图像增强域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值