树形DP整理

树形DP整理

(此文章部分概念引自《信息学奥赛一本通·提高篇》,特此声明!)

基本概念

  1. 动规顺序:一般按照后序遍历,即叶 —> 根

  2. 实现方式:树形DP一般是通过记忆化搜索实现,因此采用递归方式

  3. 时间复杂度:基本上是O(n),若有附加维则是O(n*m)

经典问题

  1. 树的重心

  2. 树的最长路径(最远点对)

  3. 树的中心问题

  4. 普通树形DP

例题

  1. 由根分成左右子树两部分的情况(普通树可通过多叉转二叉转为二叉树)

    【例1】二叉苹果树 luogu2015

    题目

    【题目描述】
    有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)

    这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。

    我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树
    2 5
    \ /
    3 4
    \ /
    1

    现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

    给定需要保留的树枝数量,求出最多能留住多少苹果。

    【输入格式】

    第1行2个数,N和Q(1<=Q<= N,1<N<=100)。

    N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。

    每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。

    每根树枝上的苹果不超过30000个。

    【输出格式】
    一个数,最多能留住的苹果的数量。

    【代码】

/*
User:Mandy.H.Y
Language:c++
Problem:appletree
*/ 

#include<bits/stdc++.h>

#define Max(x,y) (x)>(y)?(x):(y)
#define Min(x,y) (x)<(y)?(x):(y)
#define mem(A) memset((A),0,sizeof(A))

const int maxn=102;

int n,q,first[maxn],size=0,f[maxn][maxn];

struct Edge
{
	int v,w,nt;
}edge[maxn<<1];

template<typename T>inline void read(T &x)
{
	x=0;char c=getchar();bool f=0;
	while(c<'0'||c>'9') {f|=(c=='-');c=getchar();}
	while(c>='0'&&c<='9') {x=(x<<3)+(x<<1)+(c^48); c=getchar();}
	if(f)x=-x;
}

template<typename T>void putch(const T x)
{
	if(x>9) putch(x/10);
	putchar((x%10)|48);
}

template<typename T>inline void put(const T x)
{
	if(x<0) putchar('-'),putch(-x);
	else putch(x);
}

void docu()
{
	freopen("appletree.txt","r",stdin);
}

void eadd(int u,int v,int w)
{
	edge[++size].v=v;
	edge[size].w=w;
	edge[size].nt=first[u];
	first[u]=size;
}

void readdata()
{
	read(n);read(q);
	for(int i=1;i<n;++i)
	{
		int x,y,z;
		read(x);read(y);read(z);
		eadd(x,y,z);
		eadd(y,x,z);
	}
}

int dp(int u,int fa,int num,int ww)
{
	if(num<=0) return 0;
	if(f[u][num]) return f[u][num];
	int v[3],j=0,w[3];
	f[u][num]+=ww;
	if(num==1) return f[u][num];
	for(int i=first[u];i;i=edge[i].nt)
	{
		int v1=edge[i].v,w1=edge[i].w;
		if(v1==fa) continue;
		v[++j]=v1;
		w[j]=w1;
	}
	if(j==0) return f[u][num];
	for(int j=0;j<num;++j)
	{
		f[u][num]=Max(f[u][num],ww+dp(v[2],u,num-j-1,w[2])+dp(v[1],u,j,w[1]));
	}
	return f[u][num];
}

void work()
{
	put(dp(1,0,q+1,0));
}

int main()
{
//	docu();
	readdata();
	work();
	return  0;
}
【例2】选课 luogu2014(多叉转二叉)

题目

【题目描述】

在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习。现在有N门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程a是课程b的先修课即只有学完了课程a,才能学习课程b)。一个学生要从这些课程里选择M门课程学习,问他能获得的最大学分是多少?

【输入格式】

第一行有两个整数N,M用空格隔开。(1<=N<=300,1<=M<=300)

接下来的N行,第I+1行包含两个整数ki和si, ki表示第I门课的直接先修课,si表示第I门课的学分。若ki=0表示没有直接先修课(1<=ki<=N, 1<=si<=20)。

【输出格式】

只有一行,选M门课程的最大得分。

【代码】

/*
User:Mandy.H.Y
Language:c++
Problem:course
*/ 
#include<bits/stdc++.h>
using namespace std;
const int maxn = 320;
int f[maxn][maxn] , bro[maxn] , son[maxn], v[maxn];
void add(int fa, int s)
//类似链表的存储 
{
    bro[s] = son[fa];
    //son[i]中存入i的第一个儿子 
    son[fa] = s;
    //bro[i]中存入i的上一个兄弟 
}

int dp(int i, int j)
//对于每一个i节点,
//定义dp(i,j)为i的所有兄弟和 i 的所有儿子,和 i 自己,学 j 门课的最大学分总和。
{
    if (i==-1) return 0;
    if (j==0) return 0;
    if (f[i][j] != -1) return f[i][j];
    //记忆化 ,必备,在下面循环中son与bro有些会重算 
    int m = -1<<30; 
    //最小值 

    // 全分兄弟
    m = max( m, dp(bro[i] , j));
 
    for (int k = 0; k <= j-1; k++)
    //从0开始,表示不选 儿子,选i自己与j-1个兄弟 
    {
        m = max( m , dp(son[i] , k) + dp(bro[i] , j-1-k) + v[i]);
        /*那么,可以分成两种情况:
          1、不学 i 这门课,全部学兄弟的课程,dp( i , j ) = dp( bro[ i ] , j)     
          2、学 i 以及以 i 为先修课的课程, dp( i , j ) = dp( bro[ i ] , j - 1 - k ) + dp( son[ i ] , k ) + v[ i ]*/
    }
    f[i][j] = m;
    return m;
}
int main()
{
    memset(son , -1, sizeof(son));
    memset(bro , -1, sizeof(bro));
    memset(f   , -1, sizeof(f  ));
    //初始化,必备,dfs中要用于判断 、,用0易混淆,易错 
    int n, m;
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        int fa,vx;
        cin>>fa>>vx;
        add(fa,i);
        v[i] = vx;
    }
    cout<<dp(0, m+1);
    return 0;
}
  1. 背包类树形DP

【例3】 选课 luogu2014(背包)

题目

题目描述见例2

【代码】

/*
User:Mandy.H.Y
Language:c++
Problem:course
*/ 
#include<bits/stdc++.h>
using namespace std;

int m,n,head[305],next1[305],f[305][305];

void readdata()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
	{
		int a;
		scanf("%d%d",&a,&f[i][0]);
		//a是第i门的直接先修课
		//当a等于0时,无父亲的节点便接到0节点上,使树有且只有一个根 
		next1[i]=head[a];
		head[a]=i;
	}
}

void init()
{
	freopen("cour.txt","r",stdin);
	freopen("cour.txt","w",stdout);
}

int deep(int x)
{
	if(head[x]==0) return 0;
    int zi=0;
    //指已算过的科目的总数 
	for(int i=head[x];i!=0;i=next1[i])
	{
		int izi=deep(i);
		//t表示i的子结点的个数 
		zi=zi+izi+1;
		for(int j=zi;j>=0;j--)
		//01背包,一定要是降序,否则可能一个科目选两遍
		    for(int k=0;k<=izi;k++)
		        if(j-k-1>=0&&f[x][j-k-1]+f[i][k]>f[x][j])  f[x][j]=f[x][j-k-1]+f[i][k];
		        //如果(还有空间选i及i的k个子结点)
	}
	return zi;
}

void work()
{
	    deep(0);
	    printf("%d",f[0][m]);
}


int main()
{
	//init();
	readdata();
	work();
	return 0;
}
  1. 求树的最长链问题

【例4】longest mzoj1264

题目

【题目描述】

乌托邦有n个城市,某些城市之间有公路连接。任意两个城市都可以通过公路直接或者间接到达,并且任意两个城市之间有且仅有一条路径(What does this imply? A tree!)。

每条公路都有自己的长度,这些长度都是已经测量好的。

小修想从一个城市出发开车到另一个城市,并且她希望经过的公路总长度最长。请问她应该选择哪两个城市?这个最长的长度是多少?

【输入格式】

第一行n(n<=1000)。

以下n-1行每行三个整数a, b, c。表示城市a和城市b之间有公路直接连接,并且公路的长度是c(c<=10000)。

【输出格式】

仅一个数,即最长长度。

【代码】

/*
User:Mandy.H.Y
Language:c++
Problem:longest
*/

#include<bits/stdc++.h>

#define Max(x,y) (x)>(y)?(x):(y)
#define Min(x,y) (x)<(y)?(x):(y)
#define mem(A) memset((A),0,sizeof(A))

using namespace std;

const int maxn=1002;

struct Edge
{
	int v,w,nt;
}edge[maxn<<1];

int n,first[maxn],size=0,dis[3][maxn],ans=0;
//用dis[0][i]表示以i为根的子树中,i到叶结点距离的最大值
//用dis[1][i]表示以i为根的子树中,i到叶结点距离的次大值

template<typename T>inline void read(T &x)
{
	x=0;bool f=0;char c=getchar();
	while(c<'0'||c>'9') {f|=(c=='-'); c=getchar();}
	while(c>='0'&&c<='9') {x=(x<<3)+(x<<1)+(c^48); c=getchar();}
	if(f) x=-x;
}

template<typename T>void putch(const T x)
{
	if(x>9) putch(x/10);
	putchar((x%10)|48);
}

template<typename T>inline void put(const T x)
{
	if(x<0) putchar('-'),putch(-x);
	else putch(x);
}

inline void eadd(int u,int v,int w)
{
	edge[++size].v=v; 
	edge[size].w=w;
	edge[size].nt=first[u];
	first[u]=size;
}

void readdata()
{
	read(n);
	for(int i=1;i<n;++i)
	{
		int x,y,z;
		read(x);read(y);read(z);
		eadd(x,y,z);
		eadd(y,x,z);
	}
}

void dp(int u,int fa)
{
	dis[0][u]=0; dis[1][u]=0;
	for(int i=first[u];i;i=edge[i].nt)
	{
		int v=edge[i].v,w=edge[i].w;
		if(v==fa) continue;
		dp(v,u);
		int x=dis[0][v]+w;
		if(x>=dis[0][u])//加不加等于都行 
		{
			dis[1][u]=dis[0][u];
			//维护次大值
			dis[0][u]=x;
			//更新最大值
		}
		
		else if(x>dis[1][u])
		{
			dis[1][u]=x;
			//更新次大值
		}
		
		ans=Max(dis[0][v]+dis[1][v],ans);
	}
}

void work()
{
	dp(1,0);
	ans=Max(dis[0][1]+dis[1][1],ans);
	//最后要判断叶结点
	put(ans);
}

int main()
{
	readdata();
	work();
	return 0;
}
  1. 求树的最大独立集

【例5】 战略游戏 luogu2016

题目

【题目描述】

Bob 喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的办法。现在他有个问题。他要建立一个古城堡,城堡中的路形成一棵树。他要在这棵树的结点上放置 最少数目的士兵,使得这些士兵能了望到所有的路。注意,某个士兵在一个结点上时,与该 结点相连的所有边将都可以被了望到。

请你编一程序,给定一树,帮 Bob 计算出他需要放置最少的士兵。

程序名:stragedi

【输入格式】

输入文件中数据表示一棵树,描述如下:

第一行 N,表示树中结点的数目。

第二行至第 N+1 行,每行描述每个结点信息,依次为:该结点标号 i,k(后面有 k 条边 与结点 I 相连),接下来 k 个数,分别是每条边的另一个结点标号 r1,r2,…,rk。

对于一个 n(0<n<=1500)个结点的树,结点标号在 0 到 n-1 之间,在输入文件中每条 边只出现一次。

【输出格式】

输出文件仅包含一个数,为所求的最少的士兵数目。
例如,对于如下图所示的树:

在这里插入图片描述

【代码】

/*
User:Mandy.H.Y
Language:c++
Problem:stragedi
*/

#include<bits/stdc++.h>

#define Max(x,y) (x)>(y)?(x):(y)
#define Min(x,y) (x)<(y)?(x):(y)
#define mem(A) memset((A),0,sizeof(A))

using namespace std;

const int maxn=1502;

int n,first[maxn],size=0,f[2][maxn],ans=0;

struct Edge
{
	int v,nt;
}edge[maxn<<1];

template<typename T>inline void read(T &x)
{
	x=0;char c=getchar(); bool f=0;
	while(c<'0'||c>'9') {f|=(c=='-');c=getchar();}
	while(c>='0'&&c<='9') {x=(x<<3)+(x<<1)+(c^48); c=getchar();}
	if(f) x=-x;
}

template<typename T>void putch(const T x)
{
	if(x>9) putch(x/10);
	putchar((x%10)|48);
}

template<typename T>inline void put(const T x)
{
	if(x<0) putchar('-'),putch(-x);
	else putch(x);
}

void docu()
{
	freopen("1.txt","r",stdin);
}

void eadd(int u,int v)
{
	edge[++size].v=v;
	edge[size].nt=first[u];
	first[u]=size;
}

void readdata()
{
	read(n);
}

void dp(int u,int fa)
{
	f[0][u]=0;f[1][u]=1;
	for(int i=first[u];i;i=edge[i].nt)
	{
		int v=edge[i].v;
		if(v==fa) continue;
		dp(v,u);
		f[0][u]+=f[1][v];
		f[1][u]+=Min(f[0][v],f[1][v]);
	}
}

void work()
{
	for(int i=1;i<=n;++i)
	{
		int x,y,z;
		read(x);read(y);
		for(int i=1;i<=y;++i)
		{
			read(z);
			eadd(x,z);
			eadd(z,x);
		}
	}
	dp(0,0);
	ans=Min(f[0][0],f[1][0]);
	put(ans);
}

int main()
{
//	docu();
	readdata();
	work();
	return 0;
}

未完待续……

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值