文章目录
一.什么是MySQL 读写分离
我记得实习的第一家公司做个一个项目就用过mysql多数据源的读写分离方案(4年前了…依稀记得也是在mapper层面来分离的),但那时候是我同事弄的,完全不懂怎么实现的,觉得他好厉害。从此成了心里的一道坎,很久之前就了解了,一直想着要写篇博客记录下,ok,那赶紧开始吧~
先了解下概念什么是读写分离、优势、实现方式、注意事项、和使用场景。如果项目里面有用到数据库集群,开始有性能方面问题,结合业务场景及综合衡量下去考虑是否适用数据库读写分离方案。
以下解释来自chatgpt,我觉得说的挺好的。
MySQL 读写分离是一种数据库优化策略,通过将数据库的读操作和写操作分开,分别交由不同的数据库实例处理,以提高系统的性能和扩展性。具体来说,读写分离通常涉及一个主数据库(Master)和一个或多个从数据库(Slave),它们通过复制机制保持数据的一致性。
以下是读写分离的核心概念:
- 主从复制(Master-Slave Replication)
- 主库(Master):负责处理所有的写操作(INSERT、UPDATE、DELETE 等),也可以处理读操作。
- 从库(Slave):主要用于处理读操作(SELECT),不会直接接收写操作。从库通过复制机制从主库同步数据,确保数据一致性。
- 读写分离的优势
- 提高读性能:由于从库处理读操作,可以通过增加从库实例来扩展系统的读性能,减轻主库的负担。
减少主库压力:写操作集中在主库,从库处理大部分的读操作,主库的压力减少,有助于提高写操作的响应速度。
容错性:在某些情况下,从库可以用作备份,如果主库出现故障,可以临时将从库提升为主库以保持服务的可用性。
- 实现方式
读写分离可以通过多种方式实现,包括:
- 手动分离:应用程序通过逻辑代码,手动决定读请求发送到从库,写请求发送到主库。
- 代理层(中间件):使用数据库中间件(如 MySQL Proxy、MaxScale、MyCat等),在应用和数据库之间自动实现读写分离和负载均衡。
- 连接池支持:某些数据库连接池(如 Druid、HikariCP)可以自动支持主从库的读写分离。
- 注意事项
- 数据一致性问题:由于复制存在延迟,从库上的数据可能会比主库滞后。如果应用程序对实时数据一致性要求较高,需谨慎处理。
- 负载均衡:要合理分配读请求到不同的从库,避免单个从库成为瓶颈。
- 主库故障恢复:需要设计可靠的故障转移机制,确保主库出现问题时,从库能够及时接管。
- 使用场景
读写分离适用于读操作远多于写操作的场景,例如电商平台、社交媒体网站等。在这些场景中,读请求往往占大多数,通过读写分离可以有效提升系统的扩展性和性能。
二.读写分离的几种实现方式(手动控制)
这里只介绍手动分离读写库:应用程序通过逻辑代码,手动决定读请求发送到从库,写请求发送到主库的几种实现方式。
1.基于Spring下的AbstractRoutingDataSource
根据大家平常开发习惯,我还是从controller层开始吧。
1.yml
我的yml配置如下:
spring:
datasource:
type: com.alibaba.druid.pool.DruidDataSource
datasource1:
url: jdbc:mysql://127.0.0.1:3306/tl_mall_master?serverTimezone=UTC&useUnicode=true&characterEncoding=UTF8&useSSL=false
username: root
password: 123456
initial-size: 1
min-idle: 1
max-active: 20
test-on-borrow: true
driver-class-name: com.mysql.cj.jdbc.Driver
datasource2:
url: jdbc:mysql://127.0.0.1:3306/tl_mall_slave?serverTimezone=UTC&useUnicode=true&characterEncoding=UTF8&useSSL=false
username: root
password: 123456
initial-size: 1
min-idle: 1
max-active: 20
test-on-borrow: true
driver-class-name: com.mysql.cj.jdbc.Driver
2.Controller
@RestController
@RequestMapping("friend")
@Slf4j
public class FriendController {
@Autowired
private FriendService friendService;
@GetMapping(value = "select")
public List<Friend> select(){
return friendService.list();
}
@GetMapping(value = "insert")
public String in(){
Friend friend = new Friend();
friend.setName("jinbiao666");
friendService.save(friend);
return "主库插入成功";
}
}
3.Service实现
@Service
public class FriendImplService implements FriendService {
@Autowired
FriendMapper friendMapper;
@Override
@WR("R") // 库2
public List<Friend> list() {
return friendMapper.list();
}
@Override
@WR("W") // 库1
public void save(Friend friend) {
friendMapper.save(friend);
}
}
4.Mapper层
public interface FriendMapper {
@Select("SELECT * FROM friend")
List<Friend> list();
@Insert("INSERT INTO friend(`name`) VALUES (#{name})")
void save(Friend friend);
}
5.定义多数据源
@Configuration
public class DataSourceConfig {
@Bean
@ConfigurationProperties(prefix = "spring.datasource.datasource1")
public DataSource dataSource1