
吴恩达课程手写笔记以及作业
凝望,划过星空.scut
坚持别人不能坚持的,才能获得别人不能拥有的
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
吴恩达神经网路和深度学习课程手写笔记——Logistics回归中的损失函数
课程名称:logistics回归中的损失函数学习日期:2019年7月25日本节课程要点: y_hat的求法 对于单个样本而言的损失函数Loss Function 交叉熵损失函数 对于多个样本而言的Cost Function在接下来的博文中,我也会继续分享吴恩达老师神经网络和深度学习课程视频的笔记,至于视频课程中的作业,如果我能找到,我也会发上我的博客...原创 2019-07-25 17:32:46 · 380 阅读 · 2 评论 -
吴恩达神经网络和深度学习课程手写笔记——logistics回归中的梯度下降法
课程名称:梯度下降法计算图计算图的导数计算logistics回归中的梯度下降法m个样本的梯度下降学习时间:2019年7月26日课程要点: 计算图的构建,正向反向的计算(反向:链式法则) 一次梯度下降的计算方法 cost function与loss function 对m个样本进行梯度下降的方法以上就是如何构建计算图,以及如何通过计算图计算导数,实现一次梯度下降但...原创 2019-07-26 10:13:14 · 330 阅读 · 0 评论 -
吴恩达神经网络和深度学习课程手写笔记——向量化logistics回归
课程名称:向量化logistics回归向量化logistics回归中的梯度输出学习时间:2019年7月27日课程要点: 样本,权重,偏置的向量化表示 numpy中的向量计算方法 向量化计算向前传播 向量化计算反向传播至此,我们用向量化的方法完成了一次向前计算,求出了预测值矩阵下面是用向量化的方法求梯度最后我们再总结一下向量化计算梯度下降的步骤:...原创 2019-07-27 08:52:49 · 332 阅读 · 0 评论 -
吴恩达神经网络和深度学习课程手写笔记——计算神经网络的向量化输出
课程名称:神经网络的表示计算神经网络的输出(以单个样本为例)学习时间:2019年7月26日课程要点: 神经网络中对于单个结点的计算 神经网络中各层结点计算的向量化表示(重点)这里还要补充两点:一般我们不把输入层当第一层,而是把第一个隐藏层当做第一层一些构建矩阵的小技巧:当某些结点处于同一层时,我们一般可以把这些结点纵向堆叠...原创 2019-07-27 14:24:23 · 499 阅读 · 0 评论 -
吴恩达神经网络和深度学习课程手写笔记——深层神经网络中的前向传播
课程名称:深层神经网络中的前向传播学习时间:2019年7月31日课程要点: 向量化的前向传播计算方法首先我们来看看单一样本的情况:当然,我们都希望能有一个向量化的版本,能够一次性计算所有样本值,那么下面就来一起看看吧大家不要被深度神经网络的“深度”给吓到了,对于今天的课程笔记:深度神经网络的前向传播,它真的和浅层神经网络非常类似,只不过是重复几遍罢了...原创 2019-08-04 12:54:55 · 312 阅读 · 0 评论 -
吴恩达神经网络和深度学习课程Course 1——第二周测验
第二周:神经网络基础神经元节点计算什么?( )A. 神经元节点先计算激活函数,再计算线性函数(z = Wx + b)B. 神经元节点先计算线性函数(z = Wx + b),再计算激活。C. 神经元节点计算函数g,函数g计算(Wx + b)。D. 在将输出应用于激活函数之前,神经元节点计算所有特征的平均值Answer: B...原创 2019-07-27 15:26:35 · 1226 阅读 · 0 评论