【Leetcode题解】:第一题两数之和

文章讨论了一种经典的算法问题——两数之和,通过使用哈希表来提高寻找目标值的效率,将时间复杂度从O(N)降低到O(1),从而解决了在给定数组中找到和为目标值的两个整数的下标的问题。提供的Python代码示例展示了如何构建哈希表来实现这一优化策略。
摘要由CSDN通过智能技术生成

1.两数之和

题目描述

给定一个整数数组<kbd>nums</kbd> 和一个整数目标值 <kbd>target</kbd>,请你在该数组中找出 和为目标值 <kbd>target</kbd>  的那两个整数并返回数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。

示例

示例 1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:
输入:nums = [3,2,4], target = 6
输出:[1,2]

示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]

提示

  • 2 <= nums.length <= 104
  • -109 <= nums[i] <= 109
  • -109 <= target <= 109
  • 只会存在一个有效答案

提交一

class Solution(object):
    def twoSum(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: List[int]
        """
        for i,element in enumerate(nums):
            if target - element in nums:
                j = nums.index(target-element)
                if i == j :
                    continue
                else:
                    return [i,j]

执行结果

执行结果:通过
执行用时:420 ms, 在所有 Python 提交中击败了50.93%的用户
内存消耗:13.4 MB, 在所有 Python 提交中击败了95.96%的用户

较优解

哈希表

思路
注意到暴力破解时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此需要一种更优秀的方法能快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引;
使用哈希表,可以将寻找 target - x 的时间复杂度降低到从O(N) 降低到 O(1);
这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配;
代码
class Solution:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        hashtable = dict()
        #dict() 函数用于创建一个字典
        #字典键的特性:
        #1)不允许同一个键出现两次。创建时如果同一个键被赋值两次,后一个值会被记住.
        #2)键必须不可变,所以可以用数字,字符串或元组充当,而用列表就不行
        for i, num in enumerate(nums):
            if target - num in hashtable:
                return [hashtable[target - num], i]
            hashtable[nums[i]] = i
        return []
复杂度分析
时间复杂度:O(N),其中 N 是数组中的元素数量。对于每一个元素 x,我们可以 O(1) 地寻找 target - x。
空间复杂度:O(N),其中 N 是数组中的元素数量。主要为哈希表的开销。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值