题目:n种颜色小球,每种颜色小球个数为ai,求n个小球排成一列有几种排列方式。结果%1e9+7 (相同颜色小球视为相同小球,不做区分)
解析:对于第i种颜色的小球,将一个小球放在最末位置。那么前面就一共有sum-1个小球。(sum=a1+a2+…+ai)设dp[i]为前i个小球的方案数,那么dp[i+1]=dp[i]+C(sum-1,a[i]-1)。
剩下的sum-1个球一定在第i种颜色最后一个球的前面,也只有这些球在它的前面。而前sum-1个球排列的方案也就是在sum-1个位置里挑选a[i]-1个位置来确定剩下的第i种颜色的球放哪。再乘以dp[i]就得到了前sum-1个球的排列数目。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
ll a[5000];
ll c[5050][5050];
int main()
{
ll n,m,i,j,sum;
scanf("%lld",&n);
for(i=1;i<=1000;i++)
c[i][0]=1;
for(i=1;i<=1000;i++)
{
for(j=1;j<=i;j++)
{
if(i==j)
c[i][j]=1;
else if(i>j)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
}
}
ll ans=1;
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
sum=a[1];
for(i=2;i<=n;i++)
{
sum+=a[i];
ans=(ans*c[sum-1][a[i]-1])%mod;
}
printf("%lld\n",ans);
return 0;
}