AtCoder Beginner Contest 323G 题解

ABC323G 题解

G - Inversion of Tree

题意:给定一个1-n的排列p,问有多少棵连接1-n节点的无向树,使得其中有k条边 ( u 1 , v 1 ) , . . . , ( u k , v k ) (u_1,v_1),...,(u_k,v_k) (u1,v1),...,(uk,vk)

其中 u i < v i u_i<v_i ui<vi 满足: p u i > p v i p_{u_i}>p_{v_i} pui>pvi

解答:如果不加任何限制条件,就是求完全图 K n K_n Kn有多少个生成树,由矩阵树定理,这个问题很好解答,直接算出图对应的Laplace矩阵,然后求行列式即可。不过这个问题中有一些边比较特殊,我们希望知道含k个这样的边的生成树的个数,那我们在计算Laplace矩阵时可以这样:对 i < j i<j i<j p i < p j p_i<p_j pi<pj,则 L i j = 1 L_{ij}=1 Lij=1而若 p i > p j p_i>p_j pi>pj,则 L i j = x L_{ij}=x Lij=x,然后算行列式 p ( x ) = d e t ( L ) p(x)=det(L) p(x)=det(L),其中 x i x^i xi项的系数就是含i条特殊边的生成树个数。

但是算行列式并不是很简单的任务,我们把L看成常数矩阵和只含x的矩阵之和, L = A + x B L=A+xB L=A+xB,然后通过初等变换尽量将 A + x B A+xB A+xB变为 A ′ + x I A'+xI A+xI(如果中间某行没有x,我们可以将这一行整体乘以x然后继续尝试变换。如果在变换过程中已经乘了x多于n次,可以直接返回一个全零多项式,参考 d e t ( A + x B ) det(A+xB) det(A+xB)的计算方法),然后通过Hessenberg法 d e t ( A ′ + x I ) det(A'+xI) det(A+xI)得到结果

代码:

#include<bits/stdc++.h>
using namespace std;
using i64 = long long;
template<typename T>
constexpr T power(T a,i64 b){
    T ans=1;
    for(;b;b/=2){
        if(b%2==1){
            ans*=a;
        }
        a*=a;
    }
    return ans;
}
template<int P>
struct MInt{
    constexpr MInt(): x{} {}
    constexpr MInt(i64 x): x{norm(x%P)} {}
    int x;
    constexpr int norm(int x) const{
        if(x<0){
            return x+P;
        }
        return x;
    }
    constexpr int val() const{
        return x;
    }
    constexpr MInt inv() const{
        return power(*this,P-2);
    }
    constexpr MInt operator-() const{
        MInt res;
        res.x=P-x;
        return res;
    }
    constexpr MInt& operator+=(const MInt& rhs){
        x=(x+rhs.x)%P;
        return *this;
    }
    constexpr MInt& operator-=(const MInt& rhs){
        x=norm(x-rhs.x);
        return *this;
    }
    constexpr MInt& operator*=(const MInt& rhs){
        x=(1ll*x*rhs.x)%P;
        return *this;
    }
    constexpr MInt& operator/=(const MInt& rhs){
        return *this*=rhs.inv();
    }
    friend constexpr MInt operator+(const MInt& lhs,const MInt& rhs){
        MInt res=lhs;
        res+=rhs;
        return res;
    }
    friend constexpr MInt operator-(const MInt& lhs,const MInt& rhs){
        MInt res=lhs;
        res-=rhs;
        return res;
    }
    friend constexpr MInt operator*(const MInt& lhs,const MInt& rhs){
        MInt res=lhs;
        res*=rhs;
        return res;
    }
    friend constexpr MInt operator/(const MInt& lhs,const MInt& rhs){
        MInt res=lhs;
        res/=rhs;
        return res;
    }
    friend std::istream& operator>>(std::istream& is,MInt& a){
        i64 v;
        is>>v;
        a=MInt(v);
        return is;
    }
    friend std::ostream& operator<<(std::ostream& os,const MInt& a){
        os<<a.val();
        return os;
    }
    friend constexpr bool operator==(const MInt& lhs,const MInt& rhs){
        return lhs.x==rhs.x;
    }
    friend constexpr bool operator!=(const MInt& lhs,const MInt& rhs){
        return lhs.x!=rhs.x;
    }
};
// toUpperHessenberg
// O(n^3)
template<typename T>
void hessen(vector<vector<T>>& a){
    const int n=a.size();
    for(int i=0;i<n-1;i++){
        for(int j=i+1;j<n;j++){
            if(a[j][i]!=0){
                swap(a[i+1],a[j]);
                for(int k=0;k<n;k++){
                    swap(a[k][i+1],a[k][j]);
                }
                break;
            }
        }
        if(a[i+1][i]==0){
            continue;
        }
        T inv=T(1)/a[i+1][i];
        for(int j=i+2;j<n;j++){
            if(a[j][i]==0) continue;
            T tmp=a[j][i]*inv;
            for(int k=0;k<n;k++){
                a[j][k]-=tmp*a[i+1][k];
            }
            for(int k=0;k<n;k++){
                a[k][i+1]+=tmp*a[k][j];
            }
        }
    }
}
// det(A+xI)
// O(n^3)
template<typename T>
vector<T> charPoly(vector<vector<T>> a){
    const int n=a.size();
    hessen(a);
    vector<vector<T>> p(n+1);
    p[0]={1};
    for(int i=0;i<n;i++){
        p[i+1].assign(i+2,0);
        for(int j=0;j<i+1;j++){
            p[i+1][j+1]+=p[i][j];
            p[i+1][j]+=p[i][j]*a[i][i];
        }
        T prod=1;
        for(int j=i-1;j>=0;j--){
            prod*=-a[j+1][j];
            const T t=prod*a[j][i];
            for(int k=0;k<=j;k++){
                p[i+1][k]+=t*p[j][k];
            }
        }
    }
    return p[n];
}
// det(A+xB)
// O(n^3)
template<typename T>
vector<T> detPoly(vector<vector<T>> a,vector<vector<T>> b){
    const int n=a.size();
    T prod=1;
    int off=0;
    for(int i=0;i<n;i++){
        while(true){
            for(int j=i;j<n;j++){
                if(b[i][j]!=0){
                    for(int k=0;k<n;k++){
                        swap(b[k][i],b[k][j]);
                        swap(a[k][i],a[k][j]);
                    }
                    if(i!=j) prod*=-1;
                    break;
                }
            }
            if(b[i][i]!=0){
                break;
            }
            if(++off>n){
                return vector<T>(n+1,0);
            }
            for(int j=0;j<n;j++){
                b[i][j]=a[i][j];
                a[i][j]=0;
            }
            for(int j=0;j<i;j++){
                T t=b[i][j];
                for(int k=0;k<n;k++){
                    a[i][k]-=t*a[j][k];
                    b[i][k]-=t*b[j][k];
                }
            }
        }
        prod*=b[i][i];
        T t=1/b[i][i];
        for(int j=0;j<n;j++){
            a[i][j]*=t;
            b[i][j]*=t;
        }
        for(int j=0;j<n;j++){
            if(i==j) continue;
            T s=b[j][i]/b[i][i];
            for(int k=0;k<n;k++){
                a[j][k]-=s*a[i][k];
                b[j][k]-=s*b[i][k];
            }
        }
    }
    vector<T> p=charPoly(a);
    vector<T> ans(n+1,0);
    for(int i=0;i<=n-off;i++){
        ans[i]=prod*p[i+off];
    }
    return ans;
}
constexpr int P = 998244353;
using Z = MInt<P>;
int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n;
    cin>>n;
    vector<int> p(n);
    vector<vector<Z>> a(n,vector<Z>(n,0));
    vector<vector<Z>> b(n,vector<Z>(n,0));
    for(int i=0;i<n;i++){
        cin>>p[i];
    }
    for(int i=0;i<n;i++){
        for(int j=i+1;j<n;j++){
            if(p[i]<p[j]){
                a[i][i]+=1;
                a[i][j]-=1;
                a[j][i]-=1;
                a[j][j]+=1;
            }
            else{
                b[i][i]+=1;
                b[i][j]-=1;
                b[j][i]-=1;
                b[j][j]+=1;
            }
        }
    }
    a.resize(n-1);
    b.resize(n-1);
    vector<Z> ans=detPoly(a,b);
    for(int i=0;i<n;i++){
        cout<<ans[i]<<" \n"[i==n-1];
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值