文章目录
10.1 二叉树
10.1.1 为什么需要树这种数据结构
1) 数组存储方式的分析
**优点:**通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。
**缺点:**如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低[示意图]
画出操作示意图:
2) 链式存储方式的分析
**优点:**在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可,
删除效率也很好)。
**缺点:**在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历) 【示意图】
操作示意图:
3) 树存储方式的分析
能提高数据存储,读取的效率, 比如利用二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也
可以保证数据的插入,删除,修改的速度。【示意图,后面详讲】
案例: [7, 3, 10, 1, 5, 9, 12]
10.1.2 树示意图
树的常用术语(结合示意图理解):
-
节点
-
根节点
-
父节点
-
子节点
-
叶子节点(没有子节点的节点)
-
节点的权(节点值)
-
路径(从root 节点找到该节点的路线)
-
层
-
子树
-
树的高度(最大层数)
-
森林:多颗子树构成森林
10.1.3 二叉树的概念
1) 二叉树
树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。
2) 左右节点
二叉树的子节点分为左节点和右节点
3) 示意图
4) 满二叉树
如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树。
5) 完全二叉树
如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二
层的叶子节点在右边连续,我们称为完全二叉树
10.1.4 二叉树遍历的说明
使用前序,中序和后序对下面的二叉树进行遍历.
1) 前序遍历:
先输出父节点,再遍历左子树和右子树
2) 中序遍历:
先遍历左子树,再输出父节点,再遍历右子树
3) 后序遍历:
先遍历左子树,再遍历右子树,最后输出父节点
- 小结: 看输出父节点的顺序,就确定是前序,中序还是后序
10.1.5 二叉树遍历应用实例(前序,中序,后序)
1)应用实例的说明和思路
(面向梁山编程hhhh)
分析二叉树的前序,中序,后序的遍历步骤
1.创建个颗二叉树
2.前序遍历
2.1先输出当前节点(初始的时候是root节点)
2.2如果左子节点不为空,则递归继续前序遍历
2.2如果右子节点不为空,则递归继续前序遍历
3.中序遍历
3.1如果当前节点的左子节点不为空,则递归中序遍历,
3.2输出当前节点
3.2如果当前节点的右子节点不为空,则递归中序遍历
4.后序遍历
4.1如果当前节点的左子节点不为空,则递归后序遍历,
4.2如果当前节点的右子节点不为空,则递归后序遍历
4.3输出当前节点
2)代码实现
要求如下:
1.前上图的 3号节点 “卢俊” , 增加一个左子节点 [5, 关胜]
2.使用前序,中序,后序遍历,请写出各自输出的顺序是什么?
package tree;
public class BinaryTreeDemo {
public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree = new BinaryTree();
//创建需要的结点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "吴用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "关胜");
//说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root);
//测试
System.out.println("前序遍历"); // 1,2,3,5,4
binaryTree.preOrder();
//测试
System.out.println("中序遍历");
binaryTree.infixOrder(); // 2,1,5,3,4
//
System.out.println("后序遍历");
binaryTree.postOrder(); // 2,5,4,3,1
}
}
//定义BinaryTree 二叉树
class BinaryTree {
private HeroNode root;
public void setRoot(HeroNode root) {
this.root = root;
}
//前序遍历
public void preOrder() {
if(this.root != null) {
this.root.preOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder() {
if(this.root != null) {
this.root.infixOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder() {
if(this.root != null) {
this.root.postOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
}
//先创建HeroNode 结点
class HeroNode {
private int no;
private String name;
private HeroNode left; //默认null
private HeroNode right; //默认null
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + "]";
}
//编写前序遍历的方法
public void preOrder() {
System.out.println(this); //先输出父结点
//递归向左子树前序遍历
if(this.left != null) {
this.left.preOrder();
}
//递归向右子树前序遍历
if(this.right != null) {
this.right.preOrder();
}
}
//中序遍历
public void infixOrder() {
//递归向左子树中序遍历
if(this.left != null) {
this.left.infixOrder();
}
//输出父结点
System.out.println(this);
//递归向右子树中序遍历
if(this.right != null) {
this.right.infixOrder();
}
}
//后序遍历
public void postOrder() {
if(this.left != null) {
this.left.postOrder();
}
if(this.right != null) {
this.right.postOrder();
}
System.out.println(this);
}
}
3)运行结果
前序遍历
HeroNode{no=1, name='宋江'}
HeroNode{no=2, name='吴用'}
HeroNode{no=3, name='卢俊义'}
HeroNode{no=4, name='林冲'}
中序遍历
HeroNode{no=2, name='吴用'}
HeroNode{no=1, name='宋江'}
HeroNode{no=3, name='卢俊义'}
HeroNode{no=4, name='林冲'}
后序遍历
HeroNode{no=2, name='吴用'}
HeroNode{no=4, name='林冲'}
HeroNode{no=3, name='卢俊义'}
HeroNode{no=1, name='宋江'}
Process finished with exit code
前序遍历
HeroNode{no=1, name='宋江'}
HeroNode{no=2, name='吴用'}
HeroNode{no=3, name='卢俊义'}
HeroNode{no=5, name='关胜'}
HeroNode{no=4, name='林冲'}
中序遍历
HeroNode{no=2, name='吴用'}
HeroNode{no=1, name='宋江'}
HeroNode{no=5, name='关胜'}
HeroNode{no=3, name='卢俊义'}
HeroNode{no=4, name='林冲'}
后序遍历
HeroNode{no=2, name='吴用'}
HeroNode{no=5, name='关胜'}
HeroNode{no=4, name='林冲'}
HeroNode{no=3, name='卢俊义'}
HeroNode{no=1, name='宋江'}
Process finished with exit code 0
10.1.6 二叉树-查找指定节点
1) 要求
\1. 请编写前序查找,中序查找和后序查找的方法。
2.并分别使用三种查找方式,查找heroNO = 5 的节点
3.并分析各种查找方式,分别比较了多少次
2) 思路分析图解
使用前序,中序,后序的方式来查询指定的结点
前序查找思路
1.元判断当前结点的no是否等于要查找的
2.如果是相等,则返回当前结点
3.如果不等,则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
4.如果左递归前序查找,找到结点,则返回,否继续判断,当前的结点的右子节点是否
为空,如果不空,则继续向右递归前序查找.
中序查找思路
1.判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
2.如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点,否
则继续进行右递归的中序查找
3.如果右递归中序查找,找到就返回,否则返回null
后序查找思路
1.判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
2.如果找到,就返回,如果没有找到,就判断当前结点的右子节点是否为空,如果不为
空,则右递归进行后序查找,如果找到,就返回
3.就和当前结点进行,比如,如果是则返回,否则返回null
3) 代码实现
package tree;
public class BinaryTreeDemo {
public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree = new BinaryTree();
//创建需要的结点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "吴用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "关胜");
//说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root);
//测试
System.out.println("前序遍历"); // 1,2,3,5,4
binaryTree.preOrder();
//测试
System.out.println("中序遍历");
binaryTree.infixOrder(); // 2,1,5,3,4
//
System.out.println("后序遍历");
binaryTree.postOrder(); // 2,5,4,3,1
//前序遍历
// 前序遍历的次数:4
System.out.println("前序遍历方式~~~");
HeroNode resNode = binaryTree.preOrderSearch(5);
if (resNode != null) {
System.out.printf("找到了,信息为no=%d name=%s", resNode.getNo(), resNode.getName());
} else {
System.out.printf("没有找到no = %d 的英雄", 5);
}
// //中序遍历查找
// //中序遍历3 次
// System.out.println("中序遍历方式~~~");
// HeroNode resNode = binaryTree.infixOrderSearch(5);
// if (resNode != null) {
// System.out.printf("找到了,信息为no=%d name=%s", resNode.getNo(), resNode.getName());
// } else {
// System.out.printf("没有找到no = %d 的英雄", 5);
// }
// //后序遍历查找
// //后序遍历查找的次数2 次
// System.out.println("后序遍历方式~~~");
// HeroNode resNode = binaryTree.postOrderSearch(5);
// if (resNode != null) {
// System.out.printf("找到了,信息为no=%d name=%s", resNode.getNo(), resNode.getName());
// } else {
// System.out.printf("没有找到no = %d 的英雄", 5);
// }
}
}
//定义BinaryTree 二叉树
class BinaryTree {
private HeroNode root;
public void setRoot(HeroNode root) {
this.root = root;
}
//前序遍历
public void preOrder() {
if(this.root != null) {
this.root.preOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder() {
if(this.root != null) {
this.root.infixOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder() {
if(this.root != null) {
this.root.postOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//前序遍历
public HeroNode preOrderSearch(int no) {
if(root != null) {
return root.preOrderSearch(no);
} else {
return null;
}
}
//中序遍历
public HeroNode infixOrderSearch(int no) {
if(root != null) {
return root.infixOrderSearch(no);
}else {
return null;
}
}
//后序遍历
public HeroNode postOrderSearch(int no) {
if(root != null) {
return this.root.postOrderSearch(no);
}else {
return null;
}
}
}
//先创建HeroNode 结点
class HeroNode {
private int no;
private String name;
private HeroNode left; //默认null
private HeroNode right; //默认null
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + "]";
}
//编写前序遍历的方法
public void preOrder() {
System.out.println(this); //先输出父结点
//递归向左子树前序遍历
if(this.left != null) {
this.left.preOrder();
}
//递归向右子树前序遍历
if(this.right != null) {
this.right.preOrder();
}
}
//中序遍历
public void infixOrder() {
//递归向左子树中序遍历
if(this.left != null) {
this.left.infixOrder();
}
//输出父结点
System.out.println(this);
//递归向右子树中序遍历
if(this.right != null) {
this.right.infixOrder();
}
}
//后序遍历
public void postOrder() {
if(this.left != null) {
this.left.postOrder();
}
if(this.right != null) {
this.right.postOrder();
}
System.out.println(this);
}
//前序遍历查找
/**
*
* @param no 查找no
* @return 如果找到就返回该Node ,如果没有找到返回null
*/
public HeroNode preOrderSearch(int no) {
System.out.println("进入前序遍历");
//比较当前结点是不是
if(this.no == no) {
return this;
}
//1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
//2.如果左递归前序查找,找到结点,则返回
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.preOrderSearch(no);
}
if(resNode != null) {//说明我们左子树找到
return resNode;
}
//1.左递归前序查找,找到结点,则返回,否继续判断,
//2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
if(this.right != null) {
resNode = this.right.preOrderSearch(no);
}
return resNode;
}
//中序遍历查找
public HeroNode infixOrderSearch(int no) {
//判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.infixOrderSearch(no);
}
if(resNode != null) {
return resNode;
}
System.out.println("进入中序查找");
//如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
if(this.no == no) {
return this;
}
//否则继续进行右递归的中序查找
if(this.right != null) {
resNode = this.right.infixOrderSearch(no);
}
return resNode;
}
//后序遍历查找
public HeroNode postOrderSearch(int no) {
//判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.postOrderSearch(no);
}
if(resNode != null) {//说明在左子树找到
return resNode;
}
//如果左子树没有找到,则向右子树递归进行后序遍历查找
if(this.right != null) {
resNode = this.right.postOrderSearch(no);
}
if(resNode != null) {
return resNode;
}
System.out.println("进入后序查找");
//如果左右子树都没有找到,就比较当前结点是不是
if(this.no == no) {
return this;
}
return resNode;
}
}
4) 运行结果
前序遍历方式~~
进入前序遍历
进入前序遍历
进入前序遍历
进入前序遍历
找到了,信息为no=5 name=关胜
//没找到的时候
没有找到no=15的英雄
Process finished with exit code 0
中序遍历方式~~
进入中序查找
进入中序查找
进入中序查找
找到了,信息为no=5 name=关胜
Process finished with exit code 0
后序遍历方式~~
进入后序遍历
进入后序遍历
找到了,信息为no=5 name=关胜
Process finished with exit code 0
5) 小提问—不加辅助指针resNode会有怎么样的结果?
1.不加指针:结果错误,次数5次也错误
//后序遍历查找
public HeroNode postOrderSearch(int no) {
if (this.left != null) {
this.left.postOrderSearch(no);
}
if (this.right != null) {
this.right.postOrderSearch(no);
}
if (this.no == no) {
return this;
}
return null;
}
//结果
后序遍历方式~~
没有找到no=5的英雄
Process finished with exit code 0
2.加了指针:结果正确,次数正确
//后序遍历查找
public HeroNode postOrderSearch(int no) {
//判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.postOrderSearch(no);
}
if(resNode != null) {//说明在左子树找到
return resNode;
}
//如果左子树没有找到,则向右子树递归进行后序遍历查找
if(this.right != null) {
resNode = this.right.postOrderSearch(no);
}
if(resNode != null) {
return resNode;
}
System.out.println("进入后序查找");
//如果左右子树都没有找到,就比较当前结点是不是
if(this.no == no) {
return this;
}
return resNode;
}
//结果
后序遍历方式~~~
进入后序查找
进入后序查找
找到了,信息为no=5 name=关胜
Process finished with exit code 0
6) 英文单词小记
前序遍历preorder traversal
中序遍历inorder traversal
后续遍历postorder traversal
10.1.7 二叉树-删除节点
要求
-
如果删除的节点是叶子节点,则删除该节点
-
如果删除的节点是非叶子节点,则删除该子树.
-
测试,删除掉5 号叶子节点和3 号子树.
4) 完成删除思路分析
规定:
1)如果删除的节点是叶子节点,则删除该节点
2)如果删除的节点是非叶子节点,则删除该子树
思路
首先先处理:
考虑如果树是空树root,如果只有一个root结点,则等价将二叉树置空
//然后进行下面步骤
1.因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是需要删除结点,
而不能去判断当前这个结点是不是需要删除结点.
2.如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left=null;
并且就返回(结束递归删除)
3.如果当前结点的右子结点不为空,并且右子结点就是要删余结点,就将this.right=
null;并且就返回(结束递归删除)
4.如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
5.如果第4步也没有删除结点,则应当向右子树进行递归删除。
5) 代码实现
//HeroNode 类增加方法
//递归删除结点
//1.如果删除的节点是叶子节点,则删除该节点
//2.如果删除的节点是非叶子节点,则删除该子树
public void delNode(int no) {
//思路
/*
* 1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断
当前这个结点是不是需要删除结点.
尚硅谷Java 数据结构和算法
更多Java –大数据–前端–python 人工智能-区块链资料下载,可访问百度:尚硅谷官网第218页
2. 如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left = null; 并且就返回
(结束递归删除)
3. 如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right= null ;并且就返回
(结束递归删除)
4. 如果第2 和第3 步没有删除结点,那么我们就需要向左子树进行递归删除
5. 如果第4 步也没有删除结点,则应当向右子树进行递归删除.
*/
//2. 如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
if(this.left != null && this.left.no == no) {
this.left = null;
return;
}
//3.如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
if(this.right != null && this.right.no == no) {
this.right = null;
return;
}
//4.我们就需要向左子树进行递归删除
if(this.left != null) {
this.left.delNode(no);
}
//5.则应当向右子树进行递归删除
if(this.right != null) {
this.right.delNode(no);
}
}
//在BinaryTree 类增加方法
//删除结点
public void delNode(int no) {
if(root != null) {
//如果只有一个root 结点, 这里立即判断root 是不是就是要删除结点
if(root.getNo() == no) {
root = null;
} else {
//递归删除
root.delNode(no);
}
}else{
System.out.println("空树,不能删除~");
}
}
//在BinaryTreeDemo 类增加测试代码:
//测试删除节点
System.out.println("删除前,前序遍历");
binaryTree.preOrder();//12354
// binaryTree.delNode(5);
binaryTree.delNode(3);
System.out.println("删除后,前序遍历");
binaryTree.preOrder();//
6) 运行结果
//删除5
删除前,前序遍历
HeroNode [no=1, name=宋江]
HeroNode [no=2, name=吴用]
HeroNode [no=3, name=卢俊义]
HeroNode [no=5, name=关胜]
HeroNode [no=4, name=林冲]
删除后,前序遍历
HeroNode [no=1, name=宋江]
HeroNode [no=2, name=吴用]
HeroNode [no=3, name=卢俊义]
HeroNode [no=4, name=林冲]
Process finished with exit code 0
//删除3
删除前,前序遍历
HeroNode [no=1, name=宋江]
HeroNode [no=2, name=吴用]
HeroNode [no=3, name=卢俊义]
HeroNode [no=5, name=关胜]
HeroNode [no=4, name=林冲]
删除后,前序遍历
HeroNode [no=1, name=宋江]
HeroNode [no=2, name=吴用]
Process finished with exit code 0
10.1.8 二叉树-删除节点
思考题(课后练习)
- 如果要删除的节点是非叶子节点,现在我们不希望将该非叶子节点为根节点的子树删除,需要指定规则, 假如
规定如下:
-
如果该非叶子节点A 只有一个子节点B,则子节点B 替代节点A
-
如果该非叶子节点A 有左子节点B 和右子节点C,则让左子节点B 替代节点A。
-
请大家思考,如何完成该删除功能, 老师给出提示.(课后练习)
-
后面在讲解二叉排序树时,在给大家讲解具体的删除方法
(待补充)
补充知识点:
【学习笔记】
java数据结构 第1章-内容框架介绍
java数据结构 第2章-数据结构和算法概述
java数据结构 第3章-稀疏数组和队列
java数据结构 第4章-链表(单链表)
java数据结构 第4章-链表(双向链表)
java数据结构 第5章–栈
java数据结构 第6章–递归
java数据结构 第7章–排序算法01
java数据结构 第7章–排序算法02-冒泡排序
java数据结构 第7章–排序算法03-选择排序
java数据结构 第7章–排序算法04-插入排序
java数据结构 第7章–排序算法05-希尔排序
java数据结构 第7章–排序算法06-快速排序
java数据结构 第7章–排序算法07-归并排序
java数据结构 第7章–排序算法08-基数排序
java数据结构 第7章–排序算法09-常用排序算法总结和对比!
java数据结构 第8章–查找算法
java数据结构 第9章–哈希表
持续更新
【学习资料】
- 视频:尚硅谷Java数据结构与java算法(Java数据结构与算法)
- github:点击跳转