langchain学习笔记(腾讯混元版)
02–prompt 提示词模板
概述
大语言模型本身无法进行动作(进行网络检索、操作数据库等),他们只能根据输入文本得到输出文本。本章节讲述如何使用 langchain 来创建代理执行相应动作。
代理:LLM对输入进行解析,判断是否要执行动作。若需要执行动作,则生成执行动作所需的输入并调用相关动作。执行玩动作后的结果可以反馈到LLM中,以判断是否需要更多的动作。
前言
本章以 Tavily 搜索引擎作为工具为例。首先需要获取 Tavily 的 api-key 并添加到项目的环境变量中:
注意:混元api目前支持直接联网检索,因此使用Tavily只是作为调用工具的案例,也可以选择调用其他工具。
Tavily工具
- 代码:
from langchain_community.tools.tavily_search import TavilySearchResults search = TavilySearchResults(max_results=2) # 搜索结果最多2个 search_results = search.invoke("长沙今天天气如何?") print(search_results) tools = [search] # 可以多个工具构成工具列表
- 输出结果:
模型
- 代码
from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.messages import HumanMessage from langchain_openai import ChatOpenAI # 工具 search = TavilySearchResults(max_results=2) # 搜索结果最多2个 tools = [search] # 可以多个工具构成工具列表 # 模型 model = ChatOpenAI(model="hunyuan-turbo", base_url="https://api.hunyuan.cloud.tencent.com/v1") # 模型调用工具 model_with_tools = model.bind_tools(tools) response = model_with_tools.invoke([HumanMessage(content="你好!")]) # 不需要调用工具的输入 response2 = model_with_tools.invoke([HumanMessage(content="长沙今天天气怎么样?")]) # 需要调用工具的输入 print(f"ContentString: {response.content}") print(f"ToolCalls: {response.tool_calls}") print("=====================================") print(f"ContentString: {response2.content}") print(f"ToolCalls: {response2.tool_calls}")
- 输出结果:
- 结果解读:
对于不需要调用工具的代码,直接生成输出(ContentString)。
对于需要调用工具的代码,生成调用工具的输入(ToolCalls)。
注意:这里还没有真正调用工具,LLM只是告诉我们需要调用工具并生成相应的工具输入。
代理
-
代码(使用 Langgraph 进行代理的创建):
from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.messages import HumanMessage from langchain_openai import ChatOpenAI from langgraph.prebuilt import create_react_agent # 工具 search = TavilySearchResults(max_results=2) # 搜索结果最多2个 tools = [search] # 可以多个工具构成工具列表 # 模型 model = ChatOpenAI(model="hunyuan-turbo", base_url="https://api.hunyuan.cloud.tencent.com/v1") # 代理 agent_executor = create_react_agent(model, tools) response = agent_executor.invoke({"messages": [HumanMessage(content="你好!")]}) response2 = agent_executor.invoke({"messages": [HumanMessage(content="长沙今天天气怎么样?")]}) print(response["messages"]) print("====================================") print(response2["messages"])
-
输出结果:
参考文档
1、langchain 官方文档
https://python.langchain.com/docs/tutorials/
2、混元大模型 官方文档
https://cloud.tencent.com.cn/document/product/1729/101848