06--langchain(腾讯混元版)--agent 代理

langchain学习笔记(腾讯混元版)

02–prompt 提示词模板

概述

大语言模型本身无法进行动作(进行网络检索、操作数据库等),他们只能根据输入文本得到输出文本。本章节讲述如何使用 langchain 来创建代理执行相应动作。

代理:LLM对输入进行解析,判断是否要执行动作。若需要执行动作,则生成执行动作所需的输入并调用相关动作。执行玩动作后的结果可以反馈到LLM中,以判断是否需要更多的动作。

输入
不需要
需要
动作结果
用户
LLM
LLM判断是否需要动作
LLM输出,得到结果
LLM生成工具输入并调用相关工具

前言

本章以 Tavily 搜索引擎作为工具为例。首先需要获取 Tavily 的 api-key 并添加到项目的环境变量中:
在这里插入图片描述

注意:混元api目前支持直接联网检索,因此使用Tavily只是作为调用工具的案例,也可以选择调用其他工具。

Tavily工具

  • 代码:
    from langchain_community.tools.tavily_search import TavilySearchResults
    
    search = TavilySearchResults(max_results=2) # 搜索结果最多2个
    search_results = search.invoke("长沙今天天气如何?")
    print(search_results)
    tools = [search]  # 可以多个工具构成工具列表
    
  • 输出结果: 在这里插入图片描述

模型

  • 代码
    	from langchain_community.tools.tavily_search import TavilySearchResults
    	from langchain_core.messages import HumanMessage
    	from langchain_openai import ChatOpenAI
    	
    	# 工具
    	search = TavilySearchResults(max_results=2) # 搜索结果最多2个
    	tools = [search]  # 可以多个工具构成工具列表
    	
    	# 模型
    	model = ChatOpenAI(model="hunyuan-turbo", base_url="https://api.hunyuan.cloud.tencent.com/v1")
    	
    	# 模型调用工具
    	model_with_tools = model.bind_tools(tools)
    	response = model_with_tools.invoke([HumanMessage(content="你好!")])  # 不需要调用工具的输入
    	response2 = model_with_tools.invoke([HumanMessage(content="长沙今天天气怎么样?")])  # 需要调用工具的输入
    	
    	print(f"ContentString: {response.content}")
    	print(f"ToolCalls: {response.tool_calls}")
    	
    	print("=====================================")
    	
    	print(f"ContentString: {response2.content}")
    	print(f"ToolCalls: {response2.tool_calls}")
    
  • 输出结果:
    在这里插入图片描述
  • 结果解读:
    对于不需要调用工具的代码,直接生成输出(ContentString)。
    对于需要调用工具的代码,生成调用工具的输入(ToolCalls)。
    注意:这里还没有真正调用工具,LLM只是告诉我们需要调用工具并生成相应的工具输入。

代理

  • 代码(使用 Langgraph 进行代理的创建):

    from langchain_community.tools.tavily_search import TavilySearchResults
    from langchain_core.messages import HumanMessage
    from langchain_openai import ChatOpenAI
    from langgraph.prebuilt import create_react_agent
    
    # 工具
    search = TavilySearchResults(max_results=2) # 搜索结果最多2个
    tools = [search]  # 可以多个工具构成工具列表
    
    # 模型
    model = ChatOpenAI(model="hunyuan-turbo", base_url="https://api.hunyuan.cloud.tencent.com/v1")
    
    # 代理
    agent_executor = create_react_agent(model, tools)
    
    response = agent_executor.invoke({"messages": [HumanMessage(content="你好!")]})
    response2 = agent_executor.invoke({"messages": [HumanMessage(content="长沙今天天气怎么样?")]})
    
    print(response["messages"])
    print("====================================")
    print(response2["messages"])
    
  • 输出结果:
    在这里插入图片描述

参考文档

1、langchain 官方文档
https://python.langchain.com/docs/tutorials/
2、混元大模型 官方文档
https://cloud.tencent.com.cn/document/product/1729/101848

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值