超级全面的最短路径算法(Bellman-Ford、SPFA、Dijkstra、Floyd)附习题若干

鉴于某些不可告人的原因特做此片。

最短路径算法

1、Bellman-Ford算法的实现及运用

一、知识讲解

Bellman-Ford算法是一种用于求单源最短路径的算法。在此要先讲明何为最短路,顾名思义即为两点间最短的距离。标准定义为:对在权图G=(V,E),(其中V为点集,E为边集)从一个源点s到汇点t有很多路径,其中路径上权和最少的路径,称从s到t的最短路径。如下图(图为无向图):

该图中A,B间的最短路为A => C => B,即3 + 2 = 5;
A,E间的最短路为A => C => E,即3 + 4 = 7;
B,E间的最短路为B => C => E,即2 + 4 = 6。诸如此类。
那么知道定义后我们可以开始讲解Bellman-Ford算法的实现。

二、算法实现

Bellman-Ford算法核心思想为对n个点进行m次松弛操作(m为边数)。松弛操作为if (dis[tov[i]] > dis[u] + val[i]) dis[tov[i]] = dis[u] + val[i];(其中dis[i]表示从起点出发到第i号点的最短距离,tov[i]为第i条边所指向的点,u为当前节点即第i条边指的另一个节点,val[i]为第i条边的边权。)那么你每次松弛后都更新了dis[tov[i]]的最小值。当每个点做完m次松弛操作后最小值便已确定。那么时间复杂度为O(VE)。是一种时间复杂度并不是很优秀的单源最短路径算法,不过可以像后文提及的SPFA算法一样处理负边权的情况。

例1 单源最短路径【模板】(path,1s,125MB)

【问题描述】
给出一张有向图,请输出从某一点出发到所有点的最短路径。
【输入格式】
第一行包含三个整数N、M、S,分别表示点的个数、有向边的个数、出发点的编号。接下来M行每行包含三个整数Fi、Gi、Wi,分别表示第i条有向边的出发点、目标点和长度。
【输出格式】
一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度(若S=i则最短路径长度为0,若从点S无法到达点i,则最短路径长度为-1)
【输入样例】
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
【输出样例】
0 2 4 3
【数据范围】
n <= 1000,m <= 50000
【问题分析】
这是一道单源最短路径的模板题,与上文思路一致,不再赘述。代码如下:

// program 4.3.1
#include <cstdio>
#include <cstring>
#define maxn 1010
#define maxm 50010
using namespace std;

const int N = 1e3 + 10;
const int M = 5e3 + 10;
const int inf = 0x3f3f3f3f;
int n,m,s,cnt,tov[maxm],from[maxm],dis[maxn],val[maxm];

void add(int u,int v,int w)
{
   
	tov[++ cnt] = v;
	from[cnt] = u;
	val[cnt] = w;
}

int main()
{
   
	memset(dis,0x3f,sizeof dis); //初始化,将距离赋为极大值以便后面松弛操作。
	scanf("%d%d%d",&n,&m,&s);
	for (int i = 1,u,v,w; i <= m; i ++) scanf("%d%d%d",&u,&v,&w),add(u,v,w); //加边操作。
	dis[s] = 0;
	for (int i = 1; i <= n; i ++)
		for (int j = 1; j <= m; j ++)
			if (dis[tov[j]] > dis[from[j]] + val[j]) dis[tov[j]] = dis[from[j]] + val[j]; //松弛操作。
	for (int i = 1; i <= n; i ++) 
		if (dis[i] == inf) printf("-1 "); else printf("%d ",dis[i]);
	return 0;
}

2、SPFA算法的实现及运用

一、知识讲解

SPFA算法也是一种用于求单源最短路径的算法,不过相比起Bellman-Ford,此算法运用到了队列优化,松弛操作与前者相似。不过将时间复杂度降低到O(km),m是边数,k是一个常数,在最坏情况下k会达到n(点数)。所以SPFA的的平均运行速度较快,但是在遇到稠密图的时候会比较慢,所以在联赛中常会被卡,但是这是一种较常用最短路径的算法。

(图片来自百度百科)
从s点出发(s与s的距离是0,未连接我们视为无限大)

a b c d e f g
0 ∞ ∞ ∞ ∞ ∞ ∞
枚举a出发的所有点。
更新b,c,d。b,c,d均未在队列中,b,c,d入队,a出队。

a b c d e f g
0 24 8 15 ∞ ∞ ∞
b点:更新24 + 6=30 < dis[e],判断30<+∞,因此更新e。
e点入队,b出队。

a b c d e f g
0 24 8 15 30 ∞ ∞
c点:8+7=15 < dis[e],因此更新e但并不入队,因为e已经在队列中,只需更新dis[e]即可。
9+3=12 < dis[f],因此更新f。
f入队,c出队。

a b c d e f g
0 24 8 15 15 12 ∞
一直这样下去更新完所有点。

二、算法实现

例2 单源最短路径【模板】(path,1s,125MB)

【问题描述】
给出一张有向图,请输出从某一点出发到所有点的最短路径。(保证数据随机)
【输入格式】
第一行包含三个整数N、M、S,分别表示点的个数、有向边的个数、出发点的编号。接下来M行每行包含三个整数Fi、Gi、Wi,分别表示第i条有向边的出发点、目标点和长度。
【输出格式】
一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度(若S=i则最短路径长度为0,若从点S无法到达点i,则最短路径长度为-1)
【输入样例】
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
【输出样例】
0 2 4 3
【数据范围】
n <= 10000,m <= 500000

【问题分析】
这是一道单源最短路径的模板题,数据范围比之例1更大,与上文思路一致,不再赘述。代码如下:

// program 4.3.2
#include <cstring>
#include <cstdio>
using namespace std;

const int maxm = 5e5 + 10;
const int maxn = 1e5 + 10;
const int inf = 0x3f3f3f3f;
struct Edge{
   
	int to,next,val;
} f[maxm];
int n,m,s,stu[maxn],cnt,dis[maxn],que[maxn * 5];
bool vis[maxn];

void add(int u,int v,int w)
{
   
	cnt ++;
	f[cnt].to = v;
	f[cnt].val = w;
	f[cnt].next = stu[u];
	stu[u] = cnt;
} //链式前向星连边

void SPFA()
{
   
	int head = 0,tail = 1;
	memset(dis,0x3f,sizeof(dis));
	vis[s] = 1;
	dis[s] = 0;
	que[tail] = s;
	while (head < tail)
	{
   
		head ++;
		int u = que[head]; //取出队首。
		for (int i = stu[u]; i ; i = f[i].next)
			if (f[i].val + dis[u] < dis[f[i].to]) //松弛操作。
			{
   
				dis[f[i].to] = f[i].val + dis[u];
				if (!vis[f[i].to]) //若没在队列中则入队
					vis[f[i].to] = 1,que[++ tail] = f[i].to; //入队,并打上标记。
			}
		vis[u] = 0;
	}
}

int main()
{
   
	scanf("%d%d%d",&n,&m,&s);
	for (int i = 1,u,v,w; i <= m; i ++) scanf("%d%d%d",&u,&v,&w),add(u,v,w);
	SPFA();
	for (int i = 1; i <= n; i ++) 
		if (dis[i] == inf) printf("-1 "); else printf("%d ",dis[i]);
	return 0;
}

3、Dijkstra算法的实现及运用

一、知识讲解

Dijkastra算法还是是一种用于求单源最短路的方法,但不能处理有负边权的情况。朴素的Dijkstra的思路是刚开始将dis数组的初值都赋为无穷大然后将起点的dis赋为零,然后每次取出当前没跑过的点中,dis值最小的点,取出来做松弛操作,然后以此类推跑完所有点后,答案就出来了。正确性证明,由于你每次取出当前dis最小的点,又因为没有负边,所以当前点一定已经是最小值,再者每次用最小距离更新出来的点一定是当前最优的。那么时间复杂度是O(n * n)的,但这并不是本节重点,因此直接给出含注释的标程。

// program 4.3.3
#include <cstring>
#include <cstdio>
using namespace std;

const int maxm = 5e5 + 10;
const int maxn = 1e5 + 10;
const int inf = 0x3f3f3f3f;
struct Edge{
   
	int to,next,val;
} f[maxm];
int n,m,s,stu[maxn],cnt,dis[maxn],que[maxn * 5];
bool vis[maxn];

void add(int u,int v,int w)
{
   
	cnt ++;
	f[cnt].to = v;
	f[cnt].val = w
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值