说明
本课程是张曙丰在2012年左右的自旋电子学课程,可以查看网址
主要讲述了在金属磁性材料中的基本知识!
简单目录:
1-5集是磁学简单概念和相互作用。
6-10集是磁动力学。
11-18集是几个subject。
19-21集是具体应用。
::1
顺磁性:
随着时间的演变,材料磁性始终保持无序。
金属导电的电子顺磁性称为泡利顺磁性。
泡利顺磁性推导
(来源:铁磁学上册P56)
在相空间中,每个体积为
h
3
h^3
h3的相格只能有两个电子。单位体积中电子数:
n
=
2
×
4
3
π
P
F
3
/
h
3
=
8
π
3
h
3
(
2
m
E
F
)
3
/
2
=
N
(
E
)
d
E
n=2\times \frac{4}{3}\pi P_F^3/h^3 = \frac{8\pi}{3h^3}(2mE_F)^{3/2} = N(E)dE
n=2×34πPF3/h3=3h38π(2mEF)3/2=N(E)dE
其中
N
(
E
)
=
4
π
h
3
(
2
m
)
3
/
2
E
1
/
2
N(E)=\frac{4\pi}{h^3}(2m)^{3/2}E^{1/2}
N(E)=h34π(2m)3/2E1/2,为电子按能量的分布,称为态密度。在
H
=
0
,
T
=
0
K
H=0,T=0K
H=0,T=0K时
N
+
=
N
−
N_+=N_-
N+=N−
当存在外磁场时时,磁场引起的能量变化为
μ
H
\mu H
μH,因此只有费米面附近少量的电子才参与转移。
δ
N
+
=
1
2
N
μ
B
H
\delta N_+ = \frac{1}{2}N\mu_B H
δN+=21NμBH
δ
N
−
=
1
2
N
μ
B
H
\delta N_- = \frac{1}{2}N\mu_B H
δN−=21NμBH
所以相应的磁化强度应为:
M
=
(
δ
N
+
−
δ
N
−
)
μ
B
=
N
(
E
F
)
μ
B
2
H
M= (\delta N_+ - \delta N_-)\mu_B = N(E_F)\mu_B^2H
M=(δN+−δN−)μB=N(EF)μB2H
所以顺磁磁化率为
χ
顺
电
子
=
12
m
μ
B
2
h
2
(
π
3
2
/
3
n
1
/
3
)
\chi_顺^电子=\frac{12m\mu_B^2}{h^2}(\frac{\pi}{3}^{2/3}n^{1/3})
χ顺电子=h212mμB2(3π2/3n1/3)
spin glass
主要体现在冻结上,依然是磁有序,但是不是所有的磁矩都有规律排列,微观看依旧是随机的,但是宏观有净磁矩。并且不随时间改变。有冻结温度 T f T_f Tf
超顺磁
随时间整体改变磁矩方向。
一般不考虑轨道角动量原因
对于轨道波函数的解: Y 2 , 1 Y_{2,1} Y2,1和 Y 2 , − 1 Y_{2,-1} Y2,−1总是在一起的,只能在小的范围内break掉。
海森堡模型
∑
i
,
j
S
i
S
j
\sum\limits_{i,j} S_i S_j
i,j∑SiSj
海森堡交换作用并不是磁偶极子相互作用。它的来源是电子的相互作用,库仑相互作用进一步来源于泡利不相容原理。
交换两个电子后,他们的波函数相反,这意味着,当轨道部分对称时,自旋部分必须反对称。当自旋部分对称时,轨道部分必须反对称。
由于单重态和三重态的存在会导致 overlap Coulomb integral
如果是相同的自旋,波函数如果想要在一起库仑相互作用就会增强。如果是相反的自旋,波函数要分开,库仑相互作用减弱。在固体里面原子靠得近,作用力很强!
假设哈密顿量
H
=
(
E
1
−
E
2
)
S
2
2
+
E
0
∝
−
J
S
i
S
j
H = (E_1 - E_2)\frac{S^2}{2}+E_0 \propto -JS_iS_j
H=(E1−E2)2S2+E0∝−JSiSj
考虑J的大小,当晶格常数比较大的时候,电子的库仑排斥也会见效,J减小。当晶格常数比较小的时候,电子间库仑相互作用比较强,J比较大。
还有各向异性的模型,Ising model这个主要是平面内各向同性,z方向各向异性。或者z方向加强磁场,能量比J还要大。
平均场理论
$M(T) = gS\mu_BB_s(gM(T)/K_BT) , 其 中 ,其中 ,其中B_s(x)$是布里渊函数。
自旋波理论
M
(
T
)
=
M
0
−
S
∑
k
n
k
M(T) = M_0 - S\sum\limits_k n_k
M(T)=M0−Sk∑nk
n
k
=
1
e
ε
−
1
n_k = \frac{1}{e^{\varepsilon}-1}
nk=eε−11
ε
=
J
a
2
k
2
+
g
μ
B
H
\varepsilon = Ja^2k^2+g\mu_BH
ε=Ja2k2+gμBH
::2
在低温时使用自旋波理论,高温时使用平均场理论。
自旋波理论可以解释为什么有分数的
μ
B
\mu_B
μB.
铁磁矩
μ
=
2.2
μ
B
\mu = 2.2\mu_B
μ=2.2μB
Co磁矩
μ
=
1.6
μ
B
\mu = 1.6\mu_B
μ=1.6μB
Ni磁矩
μ
=
0.6
μ
B
\mu = 0.6\mu_B
μ=0.6μB
自由电子模型
E
k
∝
n
↓
5
3
+
n
↑
5
3
E_k \propto n_{\downarrow}^{\frac{5}{3}}+n_{\uparrow}^{\frac{5}{3}}
Ek∝n↓35+n↑35
E
e
x
∝
U
n
↓
↑
E_{ex} \propto U_{n_{\downarrow \uparrow}}
Eex∝Un↓↑
这里有点疑问?为什么动能正比于
n
↓
5
3
+
n
↑
5
3
n_{\downarrow}^{\frac{5}{3}}+n_{\uparrow}^{\frac{5}{3}}
n↓35+n↑35
stoner model of ferromagnetism
E t o t a l = E k + E e x = A ( n ↑ 5 3 + ( n − n ↑ 5 3 ) ) + U n ↑ ( n − n ↑ ) E_{total} = E_k +E_{ex} = A(n_{\uparrow}^{\frac{5}{3}}+(n-n_{\uparrow}^{\frac{5}{3}})) +U_{n_{\uparrow (n-n_{\uparrow})}} Etotal=Ek+Eex=A(n↑35+(n−n↑35))+Un↑(n−n↑)
铁磁性条件:一阶偏导为0,二阶偏导大于0.得到
N
(
ε
F
)
U
>
1
N(\varepsilon_F)U>1
N(εF)U>1
N为费米面态密度,U为库仑积分。
homework1
利用stoner model 计算二维的临界条件。
二维铁磁性定理:
Mermin-Wagner定理,利用海森堡模型在二维材料中不存在长程磁有序。 这里主要是考虑各向同性,如果是各向异性在二位材料可以产生磁性。
参考文献:
Mermin, N. D., & Wagner, H. (1966). Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Physical Review Letters, 17(22), 1133.
::3
磁相互作用
自旋电子学主要研究室温下的现象,这个时候单纯的量子效应较弱,这个时候主要考虑经典(半经典)的效应。
交换能
A:交换常数。
H
=
−
J
∑
i
,
j
S
i
S
j
=
−
J
∫
d
x
M
(
x
)
⋅
(
M
(
x
+
1
)
+
M
(
x
−
a
)
)
H = -J\sum\limits_{i,j}S_i S_j = -J\int dx{M(x)\cdot (M(x+1)+M(x-a))}
H=−Ji,j∑SiSj=−J∫dxM(x)⋅(M(x+1)+M(x−a))
假设M(x)随x是缓慢变化的。 假设模不变。
M
(
x
+
a
)
=
M
(
x
)
+
a
∂
M
(
x
)
∂
x
+
1
2
a
2
∂
M
(
x
)
2
∂
2
x
M(x+a) = M(x) + a\frac{\partial M(x)}{\partial x} + \frac{1}{2} a^2 \frac{\partial M(x)^2}{\partial^2x}
M(x+a)=M(x)+a∂x∂M(x)+21a2∂2x∂M(x)2
M
(
x
−
a
)
=
M
(
x
)
−
a
∂
M
(
x
)
∂
x
+
1
2
a
2
∂
M
(
x
)
2
∂
2
x
M(x-a) = M(x) - a\frac{\partial M(x)}{\partial x} + \frac{1}{2} a^2 \frac{\partial M(x)^2}{\partial^2x}
M(x−a)=M(x)−a∂x∂M(x)+21a2∂2x∂M(x)2
M
(
x
+
a
)
+
M
(
x
−
a
)
=
C
o
n
s
t
+
a
2
∂
M
(
x
)
2
∂
2
x
M(x+a) + M(x-a) = Const + a^2 \frac{\partial M(x)^2}{\partial^2x}
M(x+a)+M(x−a)=Const+a2∂2x∂M(x)2
E = − J a 2 M 2 ∫ d x M ( x ) ⋅ ∂ M ( x ) 2 ∂ 2 x E = -\frac{J a^2}{M^2} \int dx M(x) \cdot \frac{\partial M(x)^2}{\partial^2x} E=−M2Ja2∫dxM(x)⋅∂2x∂M(x)2
E = − ∫ d x M ( x ) ⋅ H e f f E = - \int dx M(x) \cdot H_{eff} E=−∫dxM(x)⋅Heff
H e f f = J a 2 M 2 ∂ M ( x ) 2 ∂ 2 x = A ∂ M ( x ) 2 ∂ 2 x H_{eff} = \frac{Ja^2}{M^2} \frac{\partial M(x)^2}{\partial^2x} = A \frac{\partial M(x)^2}{\partial^2 x} Heff=M2Ja2∂2x∂M(x)2=A∂2x∂M(x)2
H e f f = A ∇ 2 M → H_{eff} = A \nabla^2 \mathop{M}\limits^{\to} Heff=A∇2M→
E = ∫ A 2 ⋅ M 2 ∇ 2 M E = \int \frac{A}{2 \cdot M^2} \nabla^2 M E=∫2⋅M2A∇2M
这里使用到了分步积分。 ∂ ∂ x M ⋅ ∂ M ∂ x = ( ∂ M ∂ x ) 2 + M ⋅ ∂ M 2 ∂ 2 x = 1 2 ∂ M 2 ∂ x = 0 \frac{\partial}{\partial x} M \cdot \frac{\partial M}{\partial x} = (\frac{\partial M}{\partial x})^2 + M \cdot \frac{\partial M^2}{\partial^2 x} = \frac{1}{2} \frac{\partial M^2}{\partial x} = 0 ∂x∂M⋅∂x∂M=(∂x∂M)2+M⋅∂2x∂M2=21∂x∂M2=0
形状各向异性 退磁能
E d = − H ⋅ M E_d = - H \cdot M Ed=−H⋅M
H d = − N d ⋅ M H_d = -N_d \cdot M Hd=−Nd⋅M
薄膜材料:
面内形状各向异性:
∇
⋅
H
d
=
−
4
π
∇
⋅
M
\nabla \cdot H_d = -4\pi \nabla \cdot M
∇⋅Hd=−4π∇⋅M
H
d
z
=
−
4
π
M
z
=
−
4
π
M
s
c
o
s
(
θ
)
H_d^z = - 4 \pi M_z = -4\pi M_s cos(\theta)
Hdz=−4πMz=−4πMscos(θ)
E
d
=
2
π
M
s
2
c
o
s
(
θ
)
2
E_d = 2 \pi M_s^2 cos(\theta)^2
Ed=2πMs2cos(θ)2
体效应
退磁能
E
d
=
M
s
2
a
b
2
E_d = M_s^2ab^2
Ed=Ms2ab2
畴壁能
E
w
=
σ
w
a
b
E_w = \sigma_w ab
Ew=σwab
临界大小
b
=
σ
/
M
2
b = \sigma /M^2
b=σ/M2
磁滞回线
矫顽力较小:软磁
矫顽力(coercivity)大:硬磁。
stoner - Wohlfarth model
E
=
−
H
M
c
o
s
(
θ
)
−
K
s
i
n
(
φ
−
θ
)
2
E = -HMcos(\theta) - K sin(\varphi - \theta)^2
E=−HMcos(θ)−Ksin(φ−θ)2
一阶偏导为0,二阶偏导大于0。
ϕ
\phi
ϕ为易轴和磁场H的方向。
θ
\theta
θ为M和H的方向夹角。
H的方向为z轴方向。
jump:一阶导数为0,二阶导数为0 并且
M
=
M
s
c
o
s
θ
M = M_s cos\theta
M=Mscosθ
∂
E
∂
θ
=
H
M
s
i
n
θ
−
K
s
i
n
2
(
ϕ
−
θ
)
=
0
\frac{\partial E}{\partial \theta} = HMsin\theta - K sin2(\phi - \theta) = 0
∂θ∂E=HMsinθ−Ksin2(ϕ−θ)=0
∂
2
E
∂
θ
2
=
H
M
c
o
s
θ
+
2
K
c
o
s
2
(
ϕ
−
θ
)
=
0
\frac{\partial^2 E}{\partial \theta^2} = HMcos\theta +2K cos2(\phi - \theta) = 0
∂θ2∂2E=HMcosθ+2Kcos2(ϕ−θ)=0
由于
M
s
M_s
Ms是常数,所以我们可以查看
c
o
s
θ
cos\theta
cosθ与H的关系。例如当
ϕ
=
0
\phi = 0
ϕ=0时,从一阶导为0,二阶导大于0可以得到
θ
=
0
或
者
π
\theta = 0 或者 \pi
θ=0或者π,这样,我们可以得到最基础的磁滞回线版本。它的跳跃发生在二阶导为0处因此可以得到矫顽力的大小。
注意这里不要随便约去
s
i
n
θ
,
c
o
s
θ
sin\theta,cos\theta
sinθ,cosθ,因为这些变量可能为0.
homework2
计算磁滞回线 φ = π 4 , π 3 \varphi = \frac{\pi}{4}, \frac{\pi}{3} φ=4π,3π
::4,5
Asteriod :第一代MRAM
E
=
−
M
s
H
a
c
o
s
θ
−
M
s
H
b
s
i
n
θ
+
K
s
i
n
2
θ
E = -M_sH_acos\theta -M_sH_bsin\theta +Ksin^2\theta
E=−MsHacosθ−MsHbsinθ+Ksin2θ
临界条件:一阶偏导,二阶偏导为0,解得:
H
a
=
−
2
K
M
s
c
o
s
2
θ
H_a = -\frac{2K}{M_s}cos^2\theta
Ha=−Ms2Kcos2θ
H
b
=
2
K
M
s
s
i
n
2
θ
H_b = \frac{2K}{M_s}sin^2\theta
Hb=Ms2Ksin2θ
于是有:
H
a
2
+
H
b
2
=
(
2
K
M
s
)
2
H_a^2+H_b^2=(\frac{2K}{M_s})^2
Ha2+Hb2=(Ms2K)2,称为磁翻转条件。
RKKY
中间通过费米海为媒介进行相互作用的传播。
此时的哈密顿量为:
$H_{int} = -JS_1$
homework4
在磁性材料中掺杂稀磁半导体,在二维情况下RKKY更强!
::6
畴壁能
畴壁能是交换能和各向异性能交换的结果。总能量:
E
=
E
e
x
+
E
a
n
=
A
π
2
2
L
2
L
+
K
2
L
E = E_{ex} + E_{an} = A\frac{\pi^2}{2L^2}L + \frac{K}{2}L
E=Eex+Ean=A2L2π2L+2KL
取总能最小
E
w
=
π
A
K
E_{w} = \pi \sqrt{AK}
Ew=πAK
L
w
=
π
A
K
L_w = \pi \sqrt{\frac{A}{K}}
Lw=πKA
neel壁与bloch壁
对于薄膜而言,在畴壁中间,neel壁中磁化方向是在膜内。bloch垂直于薄膜。
薄膜越薄neel壁能量越低,两种畴壁的交叉点大致为30-50nm。
交换偏置
对于反铁磁加磁场,这个时候相同方向能量降低,相反方向能量升高,总能量不变,所以对反铁磁没有影响!
对于铁磁很容易就会转过去。
磁动力学
LLG方程
d
M
d
t
=
−
γ
H
e
f
f
×
M
+
α
M
s
M
×
d
M
d
t
\frac{dM}{dt} = -\gamma H_{eff}\times M + \frac{\alpha}{M_s} M \times \frac{dM}{dt}
dtdM=−γHeff×M+MsαM×dtdM
d
M
d
t
=
−
γ
H
e
f
f
×
M
−
α
γ
M
s
M
×
(
M
×
H
e
f
f
)
\frac{dM}{dt} = -\gamma H_{eff} \times M - \frac{\alpha \gamma}{M_s} M \times (M \times H_{eff})
dtdM=−γHeff×M−MsαγM×(M×Heff)
对于进动项:
d
M
d
t
=
−
γ
H
e
f
f
×
M
\frac{dM}{dt} = -\gamma H_{eff} \times M
dtdM=−γHeff×M
对于阻尼项:
d
E
d
t
=
H
e
f
f
×
d
M
d
t
=
−
γ
α
1
+
α
2
∣
M
×
H
e
f
f
∣
2
\frac{dE}{dt} = H_{eff} \times \frac{dM}{dt} = - \frac{\gamma \alpha}{1+\alpha^2} |M\times H_{eff}|^2
dtdE=Heff×dtdM=−1+α2γα∣M×Heff∣2
阻尼项一直小于0,所以逐渐减慢。
::7
LLG方程的性质
第一,M的模不变。证明:可以在LLG方程两边同时
×
M
\times M
×M可以得到0,所以M的模不变。
第二,平衡位置一定是M与H方向一致。
第三,频率在GHz。
共振频率与共振宽度
通过共振频率和共振宽度可以计算出LLG方程中的常数系数。
施加一个带有微小扰动的外加磁场
H
=
H
0
e
z
+
(
h
x
e
x
+
h
y
e
y
)
e
i
w
t
H = H_0 e_z+(h_xe_x+h_ye_y)e^{iwt}
H=H0ez+(hxex+hyey)eiwt
此时磁化矢量M为:
M
=
M
s
e
z
+
(
δ
m
x
e
x
+
δ
m
y
e
y
)
e
i
w
t
M = M_se_z+(\delta m_x e_x + \delta m_y e_y)e^{iwt}
M=Msez+(δmxex+δmyey)eiwt
δ
m
z
=
δ
m
x
2
+
δ
m
y
2
=
0
\delta m_z = \delta m_x^2 + \delta m_y^2 = 0
δmz=δmx2+δmy2=0
$\delta m_y = \frac{ah_x+bh_y}{w2-w_r2+i\Gamma} $
δ
m
x
=
−
b
h
x
+
a
h
y
w
2
−
w
r
2
+
i
Γ
\delta m_x = \frac{-bh_x+ah_y}{w^2-w_r^2+i\Gamma}
δmx=w2−wr2+iΓ−bhx+ahy
其中
a
=
−
γ
M
s
(
1
+
α
)
−
1
(
γ
H
0
+
i
α
w
)
,
b
=
−
γ
M
s
(
1
+
α
)
−
1
(
i
α
w
)
a = -\gamma M_s (1+\alpha)^{-1}(\gamma H_0 + i\alpha w),b=-\gamma M_s (1+\alpha)^{-1}( i\alpha w)
a=−γMs(1+α)−1(γH0+iαw),b=−γMs(1+α)−1(iαw)
所以共振频率为:
w
r
=
γ
H
0
1
+
α
2
w_r = \frac{\gamma H_0}{\sqrt{1+\alpha^2}}
wr=1+α2γH0
共振宽度为:
Γ
=
2
α
w
w
r
\Gamma = 2\alpha ww_r
Γ=2αwwr
自旋输运
Drude model
j = σ E , σ = n e 2 τ m j=\sigma E,\sigma = \frac{ne^2\tau}{m} j=σE,σ=mne2τ
Hall Effect
F
=
e
v
×
B
,
j
=
n
e
v
,
E
=
F
/
e
F = ev\times B,j=nev,E=F/e
F=ev×B,j=nev,E=F/e
所以有:
E
=
1
n
e
j
×
B
E = \frac{1}{ne} j\times B
E=ne1j×B 可以测量霍尔系数来测量n
但是在磁性材料中,例如Fe,Co.可以得到
E
h
.
=
ρ
H
j
×
M
E_h. = \rho_H j\times M
Eh.=ρHj×M
其中$\rho_H >> \frac{1}{ne} $ 这里是“反常霍尔效应”?,原来一直用散射理论解释,现在也开始用berry phase来解释。
这里根本原因是由于SOC引起的。
spin hall current
主要是非磁性材料,Ta,Pt,Au,自旋霍尔角在0.1左右。在半导体材料可以使用光学方法测量,但是在金属材料无法测到。
电流为:
j
σ
=
c
E
+
c
h
σ
×
E
,
t
a
n
(
θ
H
)
=
c
h
c
j_{\sigma} = cE + c_h \sigma \times E,tan(\theta_H) = \frac{c_h}{c}
jσ=cE+chσ×E,tan(θH)=cch
::8
incerse spin hall
自旋流产生逆电荷流。非磁性材料。
j
e
=
c
h
c
σ
×
j
e
j_e = \frac{c_h}{c}\sigma \times j_e
je=cchσ×je
为什么SOC能产生垂直方向的电流?
H
=
p
2
m
+
ζ
s
o
c
(
r
×
p
)
⋅
σ
H = \frac{p^2}{m} + \zeta_{soc} (r\times p)\cdot \sigma
H=mp2+ζsoc(r×p)⋅σ
<
v
>
=
<
1
i
ℏ
[
r
,
H
]
>
=
<
p
>
m
+
<
ζ
s
o
c
(
σ
×
r
)
>
<v> = <\frac{1}{i\hbar}[r,H]> = \frac{<p>}{m} + <\zeta_{soc} (\sigma \times r)>
<v>=<iℏ1[r,H]>=m<p>+<ζsoc(σ×r)>
Anistropic Magnetoresistance(AMR) 各向异性磁阻
R
(
θ
)
=
R
⊥
+
(
R
∥
−
R
⊥
)
c
o
s
θ
R(\theta) = R_{\perp}+(R_{\parallel}- R_{\perp})cos\theta
R(θ)=R⊥+(R∥−R⊥)cosθ
一般有:
R
∥
−
R
⊥
R
⊥
≤
2
%
\frac{R_{\parallel}-R_{\perp}}{R_{\perp}} \le 2\%
R⊥R∥−R⊥≤2%
AMR的来源可以使用唯象理论解释。
当电流方向和磁场方向相同时,这个时候电子运动轨道于电流运动方向垂直,散射面积更大,所以电阻较大。
当电流方向和磁场方向垂直时,此时电子运行轨道平行于电流运动方向,散射面积小,所以电阻小。
planer Hall Effect 平面霍尔效应
实际上平面霍尔效应并不是真正的霍尔效应而是AMR效应。
通过AMR效应进行计算:
j
∥
=
j
x
c
o
s
θ
+
j
y
s
i
n
θ
=
σ
∥
(
E
y
c
o
s
θ
+
E
x
s
i
n
θ
)
j_{\parallel} = j_{x}cos\theta + j_{y} sin\theta = \sigma_{\parallel}(E_y cos\theta +E_x sin\theta)
j∥=jxcosθ+jysinθ=σ∥(Eycosθ+Exsinθ)
j
⊥
=
j
x
s
i
n
θ
+
j
y
c
o
s
θ
=
σ
⊥
(
−
E
y
s
i
n
θ
+
E
x
c
o
s
θ
)
j_{\perp} = j_{x}sin\theta + j_{y} cos\theta = \sigma_{\perp}(-E_y sin\theta +E_x cos\theta)
j⊥=jxsinθ+jycosθ=σ⊥(−Eysinθ+Excosθ)
so, 在实际测量中,
j
y
=
0
j_y = 0
jy=0
E
y
=
(
ρ
∥
−
ρ
⊥
)
j
x
s
i
n
θ
c
o
s
θ
E_y = (\rho_{\parallel} - \rho_{\perp})j_x sin\theta cos\theta
Ey=(ρ∥−ρ⊥)jxsinθcosθ
我们可以看到当
θ
=
π
4
\theta = \frac{\pi}{4}
θ=4π时,测量信号取最大值,当
θ
=
0
或
者
π
2
\theta = 0 或者 \frac{\pi}{2}
θ=0或者2π时取0.所以这个比值会很大,但是这并不是hall effect引起的而是AMR。
::9
玻尔兹曼统计
描述这个粒子使用了量子方法。这里主要是说明了随着薄膜次材料半径的增加,电阻率不断下降,另外薄膜材料的电阻率也和材料边界的电子反射率p有关,当p=1时,电阻率不随d变化,p越小,说明散射越多,电阻率越高。
::10
GMR 巨磁阻效应
平行: 电子散射较小,电阻较小。
反平行: 电子散射更强,电阻较大。
CIP:电流平行于薄膜。
CPP:电流垂直于薄膜。很明显电流垂直于薄膜时,GMR效应更加明显。
自旋积累
对于经典情况下两个金属有:
j
1
=
σ
1
E
1
,
j
2
=
σ
2
E
2
j_1 = \sigma_1 E_1 , j_2 = \sigma_2 E_2
j1=σ1E1,j2=σ2E2
同时有:
Q
=
(
E
1
−
E
2
)
ϵ
0
Q = (E_1 - E_2 ) \epsilon_0
Q=(E1−E2)ϵ0
因此在两个金属的界面上一定要电荷积累。 同样对于自旋流来说从铁磁金属到非磁性金属有:
j
↑
F
=
σ
↑
F
E
↑
=
−
σ
↑
∂
V
↑
∂
x
j_{\uparrow}^F = \sigma_{\uparrow}^F E_{\uparrow} = - \sigma_{\uparrow} \frac{\partial V_{\uparrow}}{\partial x}
j↑F=σ↑FE↑=−σ↑∂x∂V↑
j
↓
F
=
σ
↓
F
E
↓
=
−
σ
↓
∂
V
↓
∂
x
j_{\downarrow}^F = \sigma_{\downarrow}^F E_{\downarrow} = - \sigma_{\downarrow} \frac{\partial V_{\downarrow}}{\partial x}
j↓F=σ↓FE↓=−σ↓∂x∂V↓
自旋磁矩:
m
=
μ
B
(
n
↑
−
n
↓
)
=
μ
B
N
(
ϵ
F
)
e
(
V
↑
−
V
↓
)
m = \mu_B (n_{\uparrow} - n_{\downarrow}) = \mu_B N(\epsilon_F) e(V_{\uparrow} - V_{\downarrow})
m=μB(n↑−n↓)=μBN(ϵF)e(V↑−V↓)
自旋连续性方程:
∂
m
∂
t
−
μ
B
e
∂
∂
x
(
j
↑
−
j
↓
)
=
−
m
τ
i
f
\frac{\partial m}{\partial t} - \frac{\mu_B}{e}\frac{\partial}{\partial x} (j_{\uparrow} - j_{\downarrow}) = - \frac{m}{\tau_{if}}
∂t∂m−eμB∂x∂(j↑−j↓)=−τifm
自旋扩散方程,此时
∂
m
∂
x
=
0
\frac{\partial m}{\partial x} = 0
∂x∂m=0,所以
d
2
m
d
x
2
=
m
λ
2
\frac{d^2m}{dx^2} = \frac{m}{\lambda^2}
dx2d2m=λ2m
其中扩散长度
λ
=
σ
τ
i
f
/
e
2
N
(
ϵ
)
=
3
v
F
2
τ
τ
i
f
\lambda = \sqrt{\sigma \tau_{if}/e^2N(\epsilon)} = \sqrt{3v_{F}^2 \tau \tau_{if}}
λ=στif/e2N(ϵ)=3vF2ττif
下面对方程进行求解,
x
<
0
,
V
↑
−
V
↓
=
A
e
x
p
(
x
/
λ
)
x<0, V_{\uparrow} - V_{\downarrow} = Aexp(x/\lambda )
x<0,V↑−V↓=Aexp(x/λ)
x
>
0
,
V
↑
−
V
↓
=
A
e
x
p
(
−
x
/
λ
)
x>0, V_{\uparrow} - V_{\downarrow} = Aexp(-x/\lambda )
x>0,V↑−V↓=Aexp(−x/λ)
当x=0时,电压相同有
A
=
B
A=B
A=B,于是有:
j
↑
F
−
j
↓
F
=
σ
↑
−
σ
↓
σ
↑
+
σ
↓
j_{\uparrow}^F - j_{\downarrow}^F = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}}
j↑F−j↓F=σ↑+σ↓σ↑−σ↓
j
↑
F
−
j
↓
F
=
−
σ
N
B
2
λ
N
j_{\uparrow}^F - j_{\downarrow}^F = -\frac{\sigma^N B}{2\lambda_N}
j↑F−j↓F=−2λNσNB
对于有自旋积累的双材料模型的电阻(欧姆电阻和自旋积累引起的电阻):
R
=
V
(
L
2
)
−
V
(
−
L
1
)
=
e
j
e
L
2
2
σ
N
+
e
j
e
L
1
2
σ
F
+
δ
R
R = V(L_2) - V(-L_1) = \frac{e j_e L_2 }{2 \sigma^N} + \frac{e j_e L_1}{2 \sigma^F} + \delta R
R=V(L2)−V(−L1)=2σNejeL2+2σFejeL1+δR
其中
δ
R
=
D
2
σ
N
−
D
2
σ
F
=
P
2
j
e
σ
N
λ
N
+
(
1
−
P
2
)
σ
N
λ
F
\delta R = \frac{D}{2 \sigma^N} - \frac{D}{2\sigma^F} = \frac{P^2 j_e}{\frac{\sigma^N}{\lambda_N} + \frac{(1-P^2)\sigma^N}{\lambda_F}}
δR=2σND−2σFD=λNσN+λF(1−P2)σNP2je 为自旋积累引起的电阻。
对于半金属:
P
=
1
,
δ
R
=
ρ
N
λ
N
P = 1,\delta R = \rho^N \lambda_N
P=1,δR=ρNλN
所以半金属材料的电阻
δ
R
\delta R
δR还是很大的
对于半导体材料电导率两者并不匹配,因此会导致效应十分微弱。 主要是
σ
N
<
<
σ
F
\sigma^N << \sigma^F
σN<<σF.
j
↑
N
−
j
↓
j
↑
N
+
j
↓
=
P
2
1
−
P
2
λ
F
λ
N
σ
N
σ
F
\frac{j_{\uparrow}^{N} - j_{\downarrow}}{j_{\uparrow}^{N} + j_{\downarrow}} = \frac{P^2}{1-P^2}\frac{\lambda_F}{\lambda_N}\frac{\sigma^N}{\sigma^F}
j↑N+j↓j↑N−j↓=1−P2P2λNλFσFσN
Johnson - Silsbee experiment (1985)
在一边有自旋流,会扩散到另一极产生电压。并且两极的磁矩取向影响电压正负。
home work11
计算 R A P − R P R_{AP} - R_{P} RAP−RP,两个金属分别使用同向磁矩和反向磁矩。
:: 11
磁隧道结
隧穿电阻
电流:
j
(
V
)
=
e
∫
d
3
k
P
(
E
k
,
V
⊥
)
(
f
k
(
E
k
)
−
f
k
(
E
k
+
e
V
)
)
j(V) = e \int{d^3k P(E_k,V_{\perp}) (f_k(E_k) - f_k(E_k + eV))}
j(V)=e∫d3kP(Ek,V⊥)(fk(Ek)−fk(Ek+eV))
电导:
G
=
j
/
V
=
e
2
∫
d
3
P
(
E
k
,
V
⊥
)
δ
(
E
F
−
E
k
)
G = j/V = e^2 \int{d^3 P(E_k,V_{\perp}) \delta (E_F-E_k)}
G=j/V=e2∫d3P(Ek,V⊥)δ(EF−Ek) 态密度?
P(E_k,V_{\perp})是隧穿概率。
对于中间势垒是常数:
解:
U
b
=
A
e
k
z
+
B
e
−
k
z
,
k
=
2
m
(
U
−
E
)
ℏ
2
U_b = Ae^{kz}+ B e^{-kz},k = \sqrt{\frac{2m(U-E)}{\hbar^2}}
Ub=Aekz+Be−kz,k=ℏ22m(U−E)
当中间势垒为线性函数时
A
z
+
B
Az + B
Az+B时:
方程为艾里方程:
ℏ
2
ψ
′
′
2
m
+
(
A
z
+
B
)
ψ
=
ϵ
ψ
\frac{\hbar^2 \psi^{''}}{2m} + (Az + B) \psi = \epsilon \psi
2mℏ2ψ′′+(Az+B)ψ=ϵψ
解的形式为:
ψ
=
C
(
z
)
e
k
z
\psi = C(z)e^{kz}
ψ=C(z)ekz
simmons tunnel model
G
=
a
+
b
V
2
+
.
.
.
G = a + bV^2 + ...
G=a+bV2+...
G
=
a
+
b
T
2
+
.
.
.
G = a + bT^2 + ...
G=a+bT2+...
R
∝
e
x
p
(
1.025
t
b
V
B
)
R \propto exp(1.025t_b \sqrt{V_B})
R∝exp(1.025tbVB)
在上面的情况中,隧穿也要发生变化:
$P(k_L,K_R) = \frac{16 k_L k_R K_02}{(K_L2 + K_02)(K_R2 + K_0^2)} exp(-2 k_0 t) $
k
L
=
2
m
(
ϵ
F
−
V
L
)
ℏ
2
k_L = \sqrt{\frac{2m(\epsilon_F - V_L)}{\hbar^2}}
kL=ℏ22m(ϵF−VL)
k
R
=
2
m
(
V
R
−
ϵ
F
)
ℏ
2
k_R = \sqrt{\frac{2m( V_R - \epsilon_F)}{\hbar^2}}
kR=ℏ22m(VR−ϵF)
:: 12
设费米面处能量为0,则有:
ϵ
k
=
ℏ
2
k
z
2
2
m
−
u
\epsilon_k = \frac{\hbar^2 k_z^2}{2m} - u
ϵk=2mℏ2kz2−u,u为从底到费米面的能量绝对值。
在绝缘层的波函数为
ψ
=
A
e
k
z
+
B
e
−
k
z
,
k
=
2
m
ℏ
2
(
V
−
ϵ
k
)
\psi = Ae^{kz}+ Be^{-kz},k=\sqrt{\frac{2m}{\hbar^2}(V - \epsilon_k)}
ψ=Aekz+Be−kz,k=ℏ22m(V−ϵk)
当
k
0
>
>
k
L
,
K
R
k_0 >> k_L,K_R
k0>>kL,KR时,
P
↑
↑
=
(
k
↑
↑
)
2
+
(
k
↓
↓
)
2
P_{\uparrow \uparrow} = (k_{\uparrow \uparrow})^2 + (k_{\downarrow \downarrow})^2
P↑↑=(k↑↑)2+(k↓↓)2
P
↑
↓
=
2
k
↑
↓
k
↓
↑
P_{\uparrow \downarrow} = 2k_{\uparrow \downarrow}k_{\downarrow \uparrow}
P↑↓=2k↑↓k↓↑
P
↑
↑
−
P
↑
↓
P
↑
↑
+
P
↑
↓
=
(
k
↑
−
k
↓
k
↑
−
k
↓
)
2
\frac{P_{\uparrow \uparrow} - P_{\uparrow \downarrow}}{P_{\uparrow \uparrow} + P_{\uparrow \downarrow}} = (\frac{k_{\uparrow} - k_{\downarrow}}{k_{\uparrow} - k_{\downarrow}})^2
P↑↑+P↑↓P↑↑−P↑↓=(k↑−k↓k↑−k↓)2
根据
d
3
k
=
ρ
ϵ
,
k
2
d
k
ρ
ϵ
,
ϵ
d
ϵ
=
ρ
ϵ
d^3k = \rho \epsilon,k^2dk ~ \rho \epsilon , \epsilon d\sqrt{\epsilon} = \rho \epsilon
d3k=ρϵ,k2dk ρϵ,ϵdϵ=ρϵ
所以
p
ϵ
k
F
p~ \sqrt{\epsilon} ~ k_F
p ϵ kF
所以:
P
↑
↑
−
P
↑
↓
P
↑
↑
+
P
↑
↓
=
(
k
↑
−
k
↓
k
↑
−
k
↓
)
2
=
(
P
↑
−
P
↓
P
↑
+
P
↓
)
2
=
P
极
化
率
2
\frac{P_{\uparrow \uparrow} - P_{\uparrow \downarrow}}{P_{\uparrow \uparrow} + P_{\uparrow \downarrow}} = (\frac{k_{\uparrow} - k_{\downarrow}}{k_{\uparrow} - k_{\downarrow}})^2 = (\frac{P_{\uparrow} - P_{\downarrow}}{P_{\uparrow} + P_{\downarrow}})^2 = P_{极化率}^2
P↑↑+P↑↓P↑↑−P↑↓=(k↑−k↓k↑−k↓)2=(P↑+P↓P↑−P↓)2=P极化率2
Julliere model of TMR
求自旋极化因子P。
隧穿电导:
G
∝
N
L
(
ϵ
F
)
N
R
(
ϵ
F
)
G \propto N_L(\epsilon_F) N_R(\epsilon_F)
G∝NL(ϵF)NR(ϵF)
平行电导:
G
P
∝
N
L
↑
N
R
↑
+
N
L
↓
N
R
↓
G_P \propto N_L^{\uparrow}N_R^{\uparrow} + N_L^{\downarrow}N_R^{\downarrow}
GP∝NL↑NR↑+NL↓NR↓
反平行电导:
G
A
P
∝
N
L
↑
N
R
↓
+
N
L
↓
N
R
↑
G_{AP} \propto N_L^{\uparrow}N_R^{\downarrow} + N_L^{\downarrow}N_R^{\uparrow}
GAP∝NL↑NR↓+NL↓NR↑
T
M
R
=
G
P
−
G
A
P
G
A
P
=
P
L
P
R
1
−
P
L
P
R
TMR = \frac{G_P - G_{AP}}{ G_{AP}} = \frac{P_LP_R}{1-P_LP_R}
TMR=GAPGP−GAP=1−PLPRPLPR
所以自旋圾化因子:
P
L
,
R
=
N
L
,
R
↑
−
N
L
,
R
↓
N
L
,
R
↑
+
N
L
,
R
↓
P_{L,R} = \frac{ N_{L,R}^{\uparrow} - N_{L,R}^{\downarrow} }{N_{L,R}^{\uparrow} + N_{L,R}^{\downarrow}}
PL,R=NL,R↑+NL,R↓NL,R↑−NL,R↓
home work 12&13
证明穿透系数
在Co和半金属材料中使用Julliere model
STT
磁矩从一端进入,从一端出去,但是方向发生了改变,那么就必须有净的磁矩积累。就会导致里面的磁矩旋转。
使用连续性方程:
∂
ρ
∂
t
+
∇
⋅
J
=
0
\frac{\partial \rho}{\partial t} + \nabla \cdot J = 0
∂t∂ρ+∇⋅J=0
可得:
−
d
M
d
t
=
−
(
J
i
n
−
J
o
u
t
)
⊥
=
a
J
M
×
(
M
×
M
p
)
- \frac{dM}{dt} = -(J_{in} - J_{out})_{\perp} = a_{J} M \times (M \times M_{p})
−dtdM=−(Jin−Jout)⊥=aJM×(M×Mp)
其中:
a
J
=
μ
B
P
J
e
e
a_J = \frac{\mu_B P J^e}{e}
aJ=eμBPJe
:: 13
进动项加上阻尼项加上自旋力矩项的的LLG方程:
d
m
d
t
=
−
γ
m
×
H
e
f
f
+
α
m
×
d
m
d
t
+
a
J
m
×
(
m
×
m
P
)
\frac{dm}{dt} = - \gamma m \times H_{eff} + \alpha m \times \frac{dm}{dt} + a_{J}m \times (m \times m_P)
dtdm=−γm×Heff+αm×dtdm+aJm×(m×mP)
这也是自旋阀理论方程。
进动项使得磁矩m不断旋转,阻尼项使得最终m趋向磁场h方向,当
a
J
<
0
,
即
电
流
J
<
0
a_J < 0,即电流J<0
aJ<0,即电流J<0时,力矩方向与阻尼项方向相反。
这里需要注意下,在赛曼能中有
E
=
−
H
e
f
f
M
E = -H_{eff}M
E=−HeffM但是在一般的情况下是
H
e
f
f
=
−
∂
E
∂
m
H_{eff}= - \frac{\partial E}{\partial m}
Heff=−∂m∂E,所以就有:
d
E
d
t
=
−
H
e
f
f
d
m
d
t
\frac{dE}{dt} = - H_{eff} \frac{dm}{dt}
dtdE=−Heffdtdm
能量变化速率:
d
E
d
t
=
−
α
β
∣
H
e
f
f
×
M
∣
2
+
a
J
(
α
M
P
−
m
×
M
P
)
⋅
(
m
×
M
P
)
\frac{dE}{dt} = - \alpha \beta |H_{eff}\times M|^2 + a_{J}(\alpha M_P - m \times M_P)\cdot (m \times M_P)
dtdE=−αβ∣Heff×M∣2+aJ(αMP−m×MP)⋅(m×MP)
前一项是阻尼项后一项是自旋力矩产生的泵浦项。pumping 这一项是十分复杂的,如果为负那么可能造成磁矩的翻转。如果为0可以产生交流信号,并且scale是很小的,频率也很大。
非线性 Melnikov function
δ
E
=
−
F
(
E
)
,
F
(
E
)
=
0
,
F
(
E
)
′
>
0
,
s
t
a
b
l
e
s
t
a
t
e
\delta E = - F(E),F(E) = 0,F(E)^{'} > 0,stable state
δE=−F(E),F(E)=0,F(E)′>0,stablestate
DC信号进去会产生AC信号!
spin pumping
提出一个东西记得问它的反效应。spin pumping 就是STT的反效应。
电流–> pumping
current --> torque --> magnetion precession
Feremagnetic --> precession --> spin current:
M
=
M
0
+
m
c
o
s
w
t
,
j
s
=
A
M
×
d
M
d
t
M = M_0 + m coswt,j_s = AM\times \frac{dM}{dt}
M=M0+mcoswt,js=AM×dtdM
::14
绝热与非绝热力矩
j
s
(
x
+
d
x
)
=
P
j
e
M
(
x
+
d
x
)
j_s(x+dx) = P j_e M(x+dx)
js(x+dx)=PjeM(x+dx)
j
s
(
x
)
=
P
j
e
M
(
x
)
j_s(x) = P j_e M(x)
js(x)=PjeM(x)
Δ
j
s
=
P
j
e
[
M
(
x
+
d
x
)
−
M
(
x
)
]
\Delta j_s = P j_e [M(x+dx) - M(x)]
Δjs=Pje[M(x+dx)−M(x)]
体积内总的磁矩:
M
d
x
Mdx
Mdx
力矩:
d
(
M
d
x
)
d
t
=
P
j
e
d
M
d
x
\frac{d(Mdx)}{dt} = P j_e \frac{dM}{dx}
dtd(Mdx)=PjedxdM
磁矩m是守恒量所以有:
d
(
M
d
x
)
d
t
=
μ
B
j
s
e
d
m
d
x
=
μ
B
j
s
e
m
×
(
m
×
d
m
d
t
)
\frac{d(Mdx)}{dt} = \frac{\mu_B j_s}{e}\frac{dm}{dx} = \frac{\mu_B j_s}{e} m \times (m \times \frac{dm}{dt})
dtd(Mdx)=eμBjsdxdm=eμBjsm×(m×dtdm)
导带电子运动方程:
∂
m
∂
t
+
∇
⋅
J
=
−
1
τ
e
x
M
s
m
×
M
−
δ
m
τ
s
f
\frac{\partial m}{\partial t} + \nabla \cdot J = - \frac{1}{\tau_{ex} M_s} m \times M - \frac{\delta m }{\tau_{sf}}
∂t∂m+∇⋅J=−τexMs1m×M−τsfδm
magnetization 磁化方程:
∂
M
∂
t
=
−
γ
M
×
H
e
f
f
+
α
M
×
∂
M
∂
t
b
J
M
×
(
M
×
∂
M
∂
x
)
+
c
J
M
×
∂
M
∂
x
\frac{\partial M}{\partial t} = - \gamma M \times H_{eff} + \alpha M \times \frac{\partial M}{\partial t} b_J M \times (M \times \frac{\partial M}{\partial x}) + c_J M \times \frac{\partial M}{\partial x}
∂t∂M=−γM×Heff+αM×∂t∂MbJM×(M×∂x∂M)+cJM×∂x∂M
其中:
c
J
b
J
≈
0.01
\frac{c_J}{b_J} \approx 0.01
bJcJ≈0.01,虽然比较小,但是在domain wall 作用很大,因为一般其和第二项进行比较。
总结
spin valves:
d
m
d
t
=
−
γ
m
×
H
e
f
f
+
α
m
×
d
m
d
t
+
a
J
m
×
(
m
×
m
P
)
\frac{dm}{dt} = - \gamma m \times H_{eff} + \alpha m \times \frac{dm}{dt} + a_{J}m \times (m \times m_P)
dtdm=−γm×Heff+αm×dtdm+aJm×(m×mP)
三项分别是:进动项,阻尼项,力矩项
Tunnel junctions:
∂
m
∂
t
=
−
γ
m
×
H
e
f
f
+
α
m
×
∂
m
∂
t
a
J
m
×
(
m
×
m
P
)
+
b
J
m
×
m
P
\frac{\partial m}{\partial t} = - \gamma m \times H_{eff} + \alpha m \times \frac{\partial m}{\partial t} a_J m \times (m \times m_P) + b_J m \times m_P
∂t∂m=−γm×Heff+αm×∂t∂maJm×(m×mP)+bJm×mP
最后一项是有效场项
Domain wall:
∂
m
∂
t
=
−
γ
m
×
H
e
f
f
+
α
m
×
∂
m
∂
t
b
J
m
×
(
m
×
∂
m
∂
x
+
β
b
J
M
s
m
×
∂
m
∂
x
)
\frac{\partial m}{\partial t} = - \gamma m \times H_{eff} + \alpha m \times \frac{\partial m}{\partial t} b_J m \times (m \times \frac{\partial m}{\partial x} + \frac{\beta b_J}{M_s} m \times \frac{\partial m}{\partial x})
∂t∂m=−γm×Heff+αm×∂t∂mbJm×(m×∂x∂m+MsβbJm×∂x∂m)
最后两项分别是绝热项和非绝热项。
::15
要想写成势能形式必须是保守力。
home work
为什么
m
×
m
P
m\times m_P
m×mP不能写成一个函数的梯度,即不是保守力。与积分路径有关?
临界电流的计算。
M
=
M
s
+
δ
e
i
w
t
M = M_s + \delta e^{iwt}
M=Ms+δeiwt ,
δ
\delta
δ是一个小量偏转,带入LLG方程。
这里有一个关键的条件:w的虚部为0,当虚部小于0时不稳定。为什么呢?因为在e指数上iwt如果w虚部是小于0,那么整体就是大于0,最终随时间增大一定是发散的。
a
J
=
α
(
2
π
M
s
+
H
k
−
H
)
a_J = \alpha (2\pi M_s + H_k - H)
aJ=α(2πMs+Hk−H)
不稳定的判断条件,a一般比较大。
H
k
H_k
Hk为各向异性场。
不稳定之后存在两种解,一种是直接反平行,磁矩翻转。另一种做进动。
从LLG方程可以得到:
d
E
d
t
∝
−
α
∣
M
×
H
e
f
f
∣
2
+
a
J
(
α
M
P
−
M
×
M
P
)
⋅
(
M
×
M
P
)
\frac{dE}{dt} \propto - \alpha |M \times H_{eff}|^2 +a_J (\alpha M_P- M \times M_P)\cdot (M \times M_P)
dtdE∝−α∣M×Heff∣2+aJ(αMP−M×MP)⋅(M×MP)
第一项一定是正的,第二项可正可负,甚至随之时间改变正负。当
M
P
/
/
H
e
f
f
M_P//H_{eff}
MP//Heff时,有:
d
E
d
t
∝
(
−
α
+
a
J
H
e
f
f
)
∣
M
×
H
e
f
f
∣
2
\frac{dE}{dt} \propto (-\alpha + \frac{a_J}{H_{eff}})|M\times H_{eff}|^2
dtdE∝(−α+HeffaJ)∣M×Heff∣2
单独的STT已经被研究了很多,但是还需要和其他效应结合。
这里后面还涉及到了一些弛豫时间时间和自旋波相关。
::16
spin-dependent Ohm’s Law
电流:
j
i
e
=
σ
↑
E
↑
+
σ
↓
E
↓
j_i^e = \sigma^{\uparrow}E^{\uparrow} + \sigma^{\downarrow}E^{\downarrow}
jie=σ↑E↑+σ↓E↓
自旋流:
j
i
s
=
g
μ
B
e
(
σ
↑
E
↑
−
σ
↓
E
↓
)
j_i^s = \frac{g\mu_B}{e} (\sigma^{\uparrow}E^{\uparrow} - \sigma^{\downarrow}E^{\downarrow})
jis=egμB(σ↑E↑−σ↓E↓)
整理后:
电流:
j
i
e
=
ℏ
P
σ
0
4
e
2
(
∂
t
M
×
∂
i
M
)
⋅
M
j_i^e = \frac{\hbar P \sigma_0}{4 e^2} (\partial_t M \times \partial_i M)\cdot M
jie=4e2ℏPσ0(∂tM×∂iM)⋅M
自旋流:
j
i
s
=
g
μ
B
ℏ
σ
0
4
e
2
(
∂
t
M
×
∂
i
M
)
j_i^s = \frac{g\mu_B\hbar \sigma_0}{4e^2} (\partial_tM \times \partial_i M)
jis=4e2gμBℏσ0(∂tM×∂iM)
考虑一个一维螺旋磁畴结构:
θ
(
x
,
t
)
=
θ
(
x
−
v
t
)
,
ϕ
(
x
,
t
)
=
ϕ
0
+
w
t
\theta(x,t) = \theta(x-vt),\phi(x,t) = \phi_0 + wt
θ(x,t)=θ(x−vt),ϕ(x,t)=ϕ0+wt
电压
V
=
∫
ρ
j
i
e
d
x
=
P
ℏ
w
2
e
V = \int{\rho j_i^e dx} = P \frac{\hbar w}{2e}
V=∫ρjiedx=P2eℏw
在畴壁转动过程中能量随时间的变化为;
d
E
d
t
=
−
γ
α
0
∣
M
×
H
e
f
f
∣
2
−
γ
η
∑
∣
∂
i
M
⋅
H
e
f
f
∣
2
\frac{dE}{dt} = - \gamma \alpha_0 |M \times H_{eff}|^2 - \gamma \eta \sum |\partial_i M \cdot H_{eff}|^2
dtdE=−γα0∣M×Heff∣2−γη∑∣∂iM⋅Heff∣2
第一项是正常的阻尼项,第二项是由于焦耳热产生的,因为:
Q
=
G
↑
E
↑
2
+
G
↓
E
↓
2
=
γ
η
∑
∣
∂
i
M
×
H
e
f
f
∣
2
Q = G^{\uparrow} E^{\uparrow 2} + G^{\downarrow} E^{\downarrow 2} = \gamma \eta \sum |\partial_iM \times H_{eff}|^2
Q=G↑E↑2+G↓E↓2=γη∑∣∂iM×Heff∣2
可以理解为,电子运动产生电流,因为有焦耳热。
SOC
对于单个原子的自旋轨道耦合哈密顿量:
H
s
o
a
t
=
e
ℏ
2
m
2
e
2
(
∇
V
t
×
P
)
⋅
σ
H_{so}^{at} = \frac{e\hbar}{2m^2e^2} (\nabla V^t \times P)\cdot \sigma
Hsoat=2m2e2eℏ(∇Vt×P)⋅σ
对于固体中自旋轨道耦合哈密顿量为:
H
s
o
a
t
=
ζ
s
o
(
∇
V
e
n
×
P
)
⋅
σ
H_{so}^{at} = \zeta_{so} (\nabla V^{en} \times P)\cdot \sigma
Hsoat=ζso(∇Ven×P)⋅σ
在半导体中:
ζ
s
o
∝
1
E
g
2
−
1
(
E
g
2
+
δ
s
o
)
2
=
1000
×
e
ℏ
2
m
2
e
2
\zeta_{so} \propto \frac{1}{E_g^2} - \frac{1}{(E_g^2 + \delta_{so})^2} = 1000 \times \frac{e\hbar}{2m^2e^2}
ζso∝Eg21−(Eg2+δso)21=1000×2m2e2eℏ
这里主要是因为势能在固体里面取了平均,实际的变化很可能是剧烈的。所以差了1000倍。
在铁磁表面的哈密顿量:
H
=
P
2
2
m
+
V
+
α
(
∇
V
×
P
)
⋅
σ
−
J
∑
M
i
M
j
−
J
e
x
M
i
σ
H = \frac{P^2}{2m} + V + \alpha (\nabla V \times P)\cdot \sigma - J \sum M_i M_j - J_{ex}M_i \sigma
H=2mP2+V+α(∇V×P)⋅σ−J∑MiMj−JexMiσ
考虑最简单的情况,在界面处:
H
=
P
2
2
m
+
α
R
a
(
z
×
P
)
⋅
σ
−
J
e
x
M
⋅
σ
H = \frac{P^2}{2m} + \alpha_{Ra}(z\times P)\cdot \sigma - J_{ex} M\cdot \sigma
H=2mP2+αRa(z×P)⋅σ−JexM⋅σ
前两项就是半导体中的Rashba效应的哈密顿量。 之后是交换能。
::17
这一集和16集重复了。
:: 18
证明在金属-绝缘体表面的
H
=
H
R
a
H = H_{Ra}
H=HRa
H
R
=
α
s
o
(
∇
V
×
P
)
⋅
σ
>
>
H
P
a
u
l
i
=
ℏ
μ
B
2
m
c
2
(
∇
V
×
P
)
⋅
σ
H_R = \alpha_{so}(\nabla V \times P)\cdot \sigma >> H_{Pauli} = \frac{\hbar \mu_B}{2mc^2}(\nabla V \times P)\cdot \sigma
HR=αso(∇V×P)⋅σ>>HPauli=2mc2ℏμB(∇V×P)⋅σ
表面势为:
∇
V
=
(
W
+
E
−
χ
)
δ
(
z
)
\nabla V = (W + E - \chi) \delta (z)
∇V=(W+E−χ)δ(z)
所以
H
R
=
α
R
(
z
×
P
)
⋅
σ
,
其
中
α
R
=
α
s
o
(
W
+
E
−
χ
)
δ
(
z
)
H_R = \alpha_{R} (z \times P)\cdot \sigma , 其中 \alpha_R = \alpha_{so}(W + E - \chi) \delta (z)
HR=αR(z×P)⋅σ,其中αR=αso(W+E−χ)δ(z)
对于交换能,自旋向上的体系中,在k空间所有自旋都是朝上;自旋向下的体系中,在k空间所有自旋都是朝下;
对于Rashba效应,自旋向上的体系中,在k空间所有自旋都是顺时针,也就是自旋与k矢量(也就是M)垂直;自旋向下的体系中,在k空间所有自旋都是逆时针;
Miron NM 2010 2011
:: 19
Endo APL 2010
heat assisted writing
Δ
E
=
K
a
V
\Delta E = K_a V
ΔE=KaV
τ
=
τ
0
e
Δ
E
k
T
\tau = \tau_0 e^{\frac{\Delta E}{kT}}
τ=τ0ekTΔE
一般存储设备的年限至少要十年,那
Δ
E
k
T
\frac{\Delta E}{kT}
kTΔE至少要50,所以V不能太小,但是随着存储密度的提高,这个体积V不断减少,这就有了一定限制。
::20
所以材料的各向异性就得非常大,增大
K
a
K_a
Ka.例如材料Pt,Co。
在低温下势LLG,在高温下张曙丰老师发展了新的方程,加入了一项与弛豫时间有关。 当时还缺少实验的证实。
::21
hard disk drive
FePt(L) 有10特斯拉。 各向异性很强。
虽然各向异性很强,但是这给写入又带来了困难。与19集有点相似。