第一题:Leetcode93. 复原 IP 地址
题目描述
题解——回溯法
class Solution {
public:
vector<vector<string>> rec;
vector<string> path;
vector<string> restoreIpAddresses(string s) {
if (s.size() < 4 || s.size() > 12)
return {};
backTracking(s, 0);
vector<string> ans;
for (auto r : rec) {
string str;
for (int i = 0; i < r.size(); i++) {
if (i > 0)
str += ".";
str += r[i];
}
ans.push_back(str);
}
return ans;
}
void backTracking(const string s, int startIdx) {
if (path.size() == 4 && startIdx == s.size()) {
rec.push_back(path);
return;
}
if (startIdx >= s.size() || path.size() >= 4)
return;
for (int i = startIdx; i <= startIdx + 2; i++) {
string substr = s.substr(startIdx, i - startIdx + 1);
if (isValidAddress(substr)) {
path.push_back(substr);
backTracking(s, i + 1);
path.pop_back();
}
}
}
bool isValidAddress(const string substr) {
// 写法一
// if (substr == "" || (substr[0] == '0' && substr.size() > 1))
// return false;
// int num = 0;
// for (int i = 0; i < substr.size(); i++) {
// if (substr[i] > '9' || substr[i] < '0')
// return false;
// num = num * 10 + (substr[i] - '0');
// if (num > 255)
// return false;
// }
// return true;
// 写法二
if (substr == "" || (substr[0] == '0' && substr.size() > 1))
return false;
if (substr[0] == '0' && substr.size() == 1)
return true;
int n = atoi(substr.c_str());
if (n > 0 && n <= 255)
return true;
return false;
}
};
解题要点
- IPV4是由四段组成,可以提前剪枝
- 需要注意类似 0.0.0.0是合法的,要对只有一个零的string进行区分;
- 复习 string s.substr(startIdx,length)用法:返回s中以startIdx为下标,长度为length的子串
- atoi用法:将一个数转为int,如果不合法,则返回0,需要与IP地址中的0区分开。
第二题:Leetcode78. 子集
题目描述
题解
class Solution {
public:
vector<vector<int>> ans;
vector<int> path;
vector<vector<int>> subsets(vector<int>& nums) {
ans.reserve(1<<(nums.size()));
backTacking(nums, 0);
return ans;
}
void backTacking(const vector<int>& nums, int startIdx) {
ans.push_back(path);
if (startIdx == nums.size()) {
return;
}
for (int i = startIdx; i < nums.size(); i++) {
path.push_back(nums[i]);
backTacking(nums, i + 1);
path.pop_back();
}
}
};
Tips
- 注意 ans.push_back(path)的位置,每次回溯均push,与之前的不同。
- 使用reserve预先分配存储空间,避免反复扩容量,提高程序速度,但是,实际运用需要 处理异常,如果内存不够会 bad alloc。
第三题:Leetcode90. 子集 II
题目描述
题解
class Solution {
public:
vector<vector<int>> ans;
vector<int> path;
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
ans.reserve(1 << (nums.size()));
sort(nums.begin(), nums.end());
backTacking(nums, 0);
return ans;
}
void backTacking(const vector<int>& nums, int startIdx) {
ans.push_back(path);
if (startIdx == nums.size()) {
return;
}
for (int i = startIdx; i < nums.size(); i++) {
if (i > startIdx && nums[i] == nums[i - 1])
continue;
path.push_back(nums[i]);
backTacking(nums, i + 1);
path.pop_back();
}
}
};
与上一题区别:nums中存在重复元素
因此首先对nums进行排序,其次在同一层遍历用,跳过相同元素(见continue语句)
第四题:卡尔网 01背包问题
题目描述
题解1——二维递归数组
#include <iostream>
#include <vector>
using namespace std;
// 二维数组方法
int main()
{
int m, bagWeight;
cin >> m >> bagWeight;
vector<int> weight(m), value(m);
for (int i = 0; i < m; i++)
cin >> weight[i];
for (int i = 0; i < m; i++)
cin >> value[i];
// initialize
vector<vector<int>> dp(m, vector<int>(bagWeight + 1, 0));
for (int j = weight[0]; j <= bagWeight; j++)
dp[0][j] = value[0];
for (int i = 1; i < m; i++)
{
for (int j = bagWeight; j >= 0; j--)
{
if (j < weight[i])
dp[i][j] = dp[i - 1][j];
else
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
cout << dp[m - 1][bagWeight] << endl;
return 0;
}
要点
- 递归数组dp为m×(bagWeight+1),dp[i][j]表示在背包容量为j、从[0,i]物品中挑选时最大可以装进去的value,其公式为
- 由于i依赖于i-1,所以i从0遍历到m-1;对于dp(i,j),其依赖于dp(i-1,j),在遍历时,j从大到小和从小到大均可。题解中,为了与一维数组相同,采用从后往前遍历。
- 初始化:需要初始化i为0时取值,对于j>=weight(0),dp赋值为value(0);对于j<weight(0),dp赋值为0。
题解2——一维数组
#include <iostream>
#include <vector>
using namespace std;
// 滚动数组方法
int main()
{
int m, bagWeight;
cin >> m >> bagWeight;
vector<int> weight(m), value(m);
for (int i = 0; i < m; i++)
cin >> weight[i];
for (int i = 0; i < m; i++)
cin >> value[i];
// initialize
// vector<vector<int>> dp(m, vector<int>(bagWeight + 1, 0));
vector<int> dp(bagWeight + 1, 0);
for (int i = 0; i < m; i++)
{
// when j < weight[i], we do not change the value , so the loop ends
for (int j = bagWeight; j >= weight[i]; j--)
{
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
return 0;
}
要点
- j需要从后往前遍历的原因是:对于在i = m, j = n时,dp[n]依赖于 i = m-1 时候的dp[j<n]。如果从前往后遍历,会修改上一层的dp值。
- 由于j<weight[i] 时,对dp数组不做任何操作,所以第二层for是:j from bagWeight downto weight[i];
第五题:Leetcode416. 分割等和子集
题目描述
解题思路
将这个问题构造成01背包问题:
- 背包大小为target = sum/2;
- 物品为nums,weight和value均为nums数组元素取值;
- 这个背包问题描述为:有一个大小为 target 的背包,从nums数组中任意挑选不重复的数字,如果该背包最大装下的value之和为 target,那么代表可以将数组分成两个和相等的子集。
题解
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = accumulate(nums.begin(), nums.end(), 0);
if (sum & 1) {
cout << "sum%2 == 1" << endl;
return false;
}
// cout << "sum: " << sum << endl;
const int target = sum >> 1;
vector<int> dp(target + 1, 0);
for (int i = 0; i < nums.size(); i++) {
for (int j = target; j >= nums[i]; j--)
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
// for (int j = 0; j < dp.size(); j++)
// cout << dp[j] << " ";
// cout << endl;
}
// cout<<dp[target]<<endl;
// cout<<target<<endl;
return dp[target] == target;
}
};
Tips
- accumulate方法需要 #include <numeric>
- 如果 sum 为奇数,那么返回 false(使用 & 1 判断)
- 使用右移运算符 << 来代替 /2。(如快)