Python最佳学习路线

原文链接:https://blog.csdn.net/weixin_44558127/article/details/86527317

如何学习Python

最近开始整理python的资料,会陆续放到博客中存档。找了几个qq群,其中有一个群78486745(点击进群)。后面就没怎么加群了,还是需要看官方文档为主

python语言基础:(带你熟悉python语言的特性,学会使用python开发环境,使用python开发一些简单的案例)

(1)Python3入门,数据类型,字符串
(2)判断/循环语句,函数,
(3)类与对象,继承,多态
(4)tkinter界面编程
(5)文件与异常,数据处理简介
(6)Pygame实战飞机大战

python语言高级:(python语言的高级库,常用的企业级开发案例实战)

(1)Python常见第三方库与网络编程
(2)面向对象,Python正则表达式
(3)求职数据爬虫,金融数据爬虫,多线程爬虫
(4)Python线程、进程
(5)Python mysql数据库应用,Nosql数据库,sql,jython

python全栈工程师前端 (学会开发前端网页,会使用流行的前端框架)

(1) HTML+css
(2) 网页界面设计实战
(3) javaScript+ajax
(4) jquerry
(5) jquerry EasyUI, Mobile简介,photoshop
(6) Bootstrap

python全栈工程师后端 (常用的后端架构和企业项目实战)

(1) Django入门
(2) Django高级
(3) Django实战
(4) Flask开发原理
(5) Flask开发项目实践
(6) Tornado开发原理
(7) Tornado开发项目实践

Linux基础 (linux入门,和python结合可以找linux+python运维的工作)

(1)虚拟机安装
(2)linux服务器安装与配置
(3)apache服务器与nginx服务器安装与使用
(4)linux常用服务器命令
(5)Python-WEB服务器运行环境与配置
(6)版本管理工具svn
(7)版本管理工具git
(8)程序部署与网站迁移

Linux运维自动化开发 (Linux中比较深度的案例和实战)

(1) Python开发Linux运维
(2) Linux运维报警工具开发
(3) Linux运维报警安全审计开发
(4) Linux业务质量报表工具开发
(5) Kali安全检测工具检测
(6) Kali 密码破解实战

python数据分析 (分析爬虫抓取的数据,分析规律,用于商业化)

(1) numpy数据处理
(2) pandas数据分析
(3) matplotlib数据可视化
(4) scipy数据统计分析
(5) python 金融数据分析

python大数据 (Python操作大数据很方便)

(1) Hadoop HDFS
(2) python Hadoop MapReduce
(3) python Spark core
(4) python Spark SQL
(5) python Spark MLlib

python机器学习 (机器学习的一些入门概念和案例,python支持很多机器学习的框架)

(1) 机器学习基础知识简介
(2) KNN算法
(3) 线性回归
(4) 逻辑斯蒂回归算法
(5) 决策树算法
(6) 朴素贝叶斯算法
(7) 支持向量机
(8) 聚类k-means算法


附:开发环境

Python工程师的学习路线通常可以按照以下几个阶段来进行: 1. **基础入门**:首先了解Python的基础语法、数据类型、控制结构(如循环、条件判断)、函数和模块。通过官方文档、教程(如《Python Crash Course》)或在线课程(如Codecademy)进行学习。 2. **数据分析与科学计算**:掌握NumPy、Pandas和Matplotlib等库,用于数据处理、分析和可视化。学习如何使用Scikit-learn等机器学习库进行模型开发。 3. **Web开发**:学习Django或Flask框架,构建网站和API服务。理解HTML、CSS和JavaScript基础知识,并熟悉基本的前端框架如React或Vue。 4. **网络爬虫**:利用requests、BeautifulSoup或Scrapy等工具学习爬取网页信息和数据抓取技术。 5. **自动化运维**:学习Ansible或Fabric等工具,以及系统管理知识,进行服务器部署、配置管理和监控。 6. **云计算与容器化**:学习AWS、Azure或Google Cloud平台,了解Docker和Kubernetes进行应用部署和容器管理。 7. **深度学习与人工智能**:深入研究TensorFlow、PyTorch或其他深度学习框架,进行模型训练和部署。 8. **持续集成与测试**:学习Jenkins或GitLab CI/CD,理解和实践软件工程的最佳实践。 9. **项目实战**:参与开源项目,或者独立完成小型项目,提升实际操作能力。 10. **职业认证**:如有需求,可以考虑获得如PEP8编码风格认证、PyCharm Certified Python Professional等证书。 **相关问题--:** 1. Python工程师需要具备哪些数学背景? 2. 学习Python过程中,遇到哪些常见困难? 3. 如何平衡理论学习和实践经验?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值