wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

排序:
默认
按更新时间
按访问量

博客搬家成功..............................................................................................

成功一键搬家到CnBlogs,有些图片没有转过去,还是留在CSDN吧新地址:https://www.cnblogs.com/wishchin/

2018-06-19 18:16:15

阅读数:52

评论数:0

AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)

  接上一篇:AI:IPPR的数学表示-CNN复杂结构进化(Alex、ZF、Inception、Res、InceptionRes)。                        前言:AutoML-NasNet         VGG结构和INception结构、ResNet基元结构的出现,验证...

2018-05-11 15:39:19

阅读数:199

评论数:0

人工机器:机器学习的哲学原理、基础及完备性的来由

        观测->假设->归纳->演绎->过拟合,这是ML的一般套路和基础指导准则。导言        对于人工智能,有诸多定义,也有诸多质疑。各家的定义不用多追究。从各个领域提出对机器学习的理解,同时也...

2018-03-11 14:37:44

阅读数:191

评论数:0

AI:IPPR的数学表示-CNN结构进化(Alex、ZF、Inception、Res、InceptionRes)

前言:        文章:CNN的结构分析-------        文章:历年ImageNet冠军模型网络结构解析-------        文章:GoogleLeNet系列解读-------        文章:DNN结构演进History—CNN-GoogLeNet :Going De...

2017-07-24 16:54:45

阅读数:2916

评论数:0

AI:IPPR的数学表示-CNN基本结构分析( Conv层、Pooling层、FCN层/softmax层)

        类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长。比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支持向量的个数会随着数据集增长,SVM三层网会变得非常宽。CNN方法的多层结构,在保...

2017-07-17 13:50:57

阅读数:569

评论数:0

三维重建6:绑架问题/SensorFusion/IMU+CV-小尺度SLAM

机器人的“绑架”问题是指在缺少它之前的位置信息情况下,去确定机器人的当前位姿,例如当机器人被安置在一个已经构建好地图的环境中,但是并不知道它在地图中的相对位置,或者在移动过程中,由于传感器的暂时性功能故障或相机的快速移动,都导致机器人先前的位置信息的丢失,就像人质的眼睛被蒙上黑布条,拉上集装箱被运...

2017-06-20 14:10:28

阅读数:3749

评论数:0

三维重建5:场景中语义分析/语义SLAM/DCNN-大尺度SLAM

在实时/非实时大规模三维场景重建中,引入了语义SLAM这个概念,参考三维重建:SLAM的尺度和方法论问题 和三维重建:SLAM的粒度和工程化问题 。大规模三维场景重建的尺度增大,因此相对于整个重建过程的粒度也从点到特征点到目标物体级别,对场景进行语义标记成为重要的工作。

2017-06-20 10:50:07

阅读数:4097

评论数:0

三维重建:SLAM的尺度和方法论问题

在计算机视觉中, 三维重建是指根据单视图或者多视图的图像重建三维信息的过程. 由于单视频的信息不完全,因此三维重建需要利用经验知识.。而多视图的三维重建(类似人的双目定位)相对比较容易, 其方法是先对摄像机进行标定, 即计算出摄像机的图象坐标系与世界坐标系的关系.然后利用多个二维图象中的信息重建出...

2016-05-18 19:19:25

阅读数:5129

评论数:3

三维重建:SLAM的粒度和工程化问题

三维重建根据时间和场景的粒度不同需要引入不同的工程化方法:1.像素级别重建,也称为稠密重建;2.特征点级别重建,也称为稀疏重建;3.环境重建,被称为目标级别重建。

2016-05-18 19:08:44

阅读数:3151

评论数:1

自动化:正义社会的硬件基础(计算机科学)

        为了增加这个月的文章数量,把写在科学网上的文章再贴到CSDN上面。        科学网链接:正义社会的硬件基础        在《超人.钢铁之躯》,里面卡艾尔的言论:我觉得氪星人失去了一样宝贵的东西,可以选择的自由。二、正义的硬件基础?      阳光越是强烈的地方,阴影就越是深...

2015-11-30 10:13:15

阅读数:610

评论数:0

图像描述:各种维度图像的逻辑描述形式

在图像分析处理领域,图像的逻辑描述形式是计算机处理图像的基础,逻辑形式在 逻辑层面 描述出:图像到底是什么?          在几何数学中,空间作为集合的存在形式,根据不同的约束可以划分为不同的空间。具有拓扑结构的集合构成拓扑空间,局部可度量且正交的拓扑空间为流形,全部可度量的(只用一个坐标系即...

2015-11-18 11:08:21

阅读数:1642

评论数:0

Python:Matplotlib 画曲线和柱状图(Code)

这是我关于pose识别率的实验结果,感觉结果真是令人不可思议!(非博主原文!) 原文链接:http://blog.csdn.net/ikerpeng/article/details/20523679 有少量修改,如有疑问,请访问原作者

2014-05-03 15:39:04

阅读数:33935

评论数:0

Learning Face Age Progression: A Pyramid Architecture of GANs

前言       作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向。基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式、end2end、以及MaskCNN模型,而后出现基于CNN的预测模型-AcGans。       CNN作为一个基本...

2018-06-19 17:44:36

阅读数:54

评论数:0

个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page?

文章链接:个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page? 感觉还是Fuck The Dog!看来还是以后把文章写在本地,然后再上传到CSDN吧。被CSDN的缓存机制坑了几次,得非常注意这次事件才行!!!...

2018-06-19 17:21:50

阅读数:95

评论数:0

博客需要搬家

太他nia的垃圾了,写完之后点击发布,只保留了前一段,后面的长篇大论全都没了,感情是自动保存草稿的那一段,其他的呢。其他的呢?本地的没有上传上去,这个缓存机制有很大问题,太恶心人了!转移到其他地方吧................

2018-06-19 16:54:51

阅读数:59

评论数:0

Learning Face Age Progression: A Pyramid Architecture of GANs

前言       作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向。基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式、end2end、以及MaskCNN模型,而后出现基于CNN的预测模型-AcGans。       CNN作为一个基本...

2018-06-19 16:40:44

阅读数:59

评论数:0

三维重建:GitHub百度Apollo 2.0

GitHub:https://github.com/ApolloAuto/apollo1. 关于Apollo的数据:Apollo的数据会如何开放?自动驾驶数据将包括具有高分辨率图像和像素级别标注的 RGB 视频,具有场景级语义分割的密集三维点云、基于双目立体视觉的视频和全景图像。数据集中提供的图像...

2018-06-06 18:20:29

阅读数:466

评论数:1

语义分割:使用关系图辅助图像分割-Capsule Network、IceNet

文章:欲取代CNN的Capsule Network究竟是什么来头?它能为AI界带来革命性转折么?

2018-06-06 16:48:35

阅读数:108

评论数:0

预测学习、深度生成式模型、DcGAN、应用案例、相关paper

         大模型需要更大量的数据,用以拟合更复杂的假设空间。GAN本身可以用于生成数据,在GAN的学习过程中隐藏了弱监督学习和增强学习的思想。下文主要是对GAN应用于NLP进行相关分析,配图不错,摘抄下来,删除掉关于NLP的部分。本文有大量修改,如有疑虑,请移步原文。       文章:深...

2018-06-05 15:08:54

阅读数:275

评论数:0

最优化方法系列:Adam+SGD—>AMSGrad

        自动调参的Adam方法已经非常给力了,不过这主要用于工程界,在多数科学实验室中,依然使用了传统的SGD方法,在SGD基础上增加各类学习率的主动控制,以达到对复杂模型的精细调参,以达到刷出最高的分数。         ICLR会议的         On the convergenc...

2018-06-05 10:42:21

阅读数:174

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭