现实中的科学计算法的加法运算
0.123
×
1
0
5
+
0.560
×
1
0
2
=
?
0.123\times10^{5}+0.560\times10^{2}=?
0.123×105+0.560×102=?
我们是怎么算呢?
- 通过移动小数点将它们的指数对齐
0.560 × 1 0 2 = 0.00056 × 1 0 5 0.560\times10^{2}=0.00056\times10^{5} 0.560×102=0.00056×105 - 两个尾数相加
0.123 + 0.00056 = 0.12356 0.123+0.00056=0.12356 0.123+0.00056=0.12356 - 将结果四舍五入
0.12356 × 1 0 5 = 0.124 × 1 0 5 0.12356\times10^{5}=0.124\times10^{5} 0.12356×105=0.124×105
机器内部
设 X m , Y m 是 X , Y 的 尾 数 , X e , Y e 是 X , Y 的 阶 码 。 ( X e < Y e ) 设X_m,Y_m是X,Y的尾数,X_e,Y_e是X,Y的阶码。(X_e<Y_e) 设Xm,Ym是X,Y的尾数,Xe,Ye是X,Y的阶码。(Xe<Ye)
- 和将指数对齐意思一样,有个名词叫对阶,因为浮点数的指数用阶码表示,对阶就是让阶码相同。
- 现实生活中,指数大的像小的看齐也行,小的像大的看齐也行。在机器中是小阶像大阶看齐。阶小的数尾数右移,右移位数是两个数的阶码差的绝对值。
- IEEE 754尾数右移时,要将不显示表示的1移到小数位,高位补0,低位移到附加位。
计算两数阶码差
Δ e = Y e − X e \Delta e=Y_e-X_e Δe=Ye−Xe
[ Δ E ] 补 = [ E x − E y ] 补 = [ E x ] 移 − [ E y ] 移 = [ E x ] 移 + [ − [ E y ] 移 ] 补 ( m o d 2 n ) [\Delta E]_{补}=[E_x-E_y]_{补}=[E_x]_{移}-[E_y]_{移}=[E_x]_{移}+[-[E_y]_{移}]_{补}(mod 2^n) [ΔE]补=[Ex−Ey]补=[Ex]移−[Ey]移=[Ex]移+[−[Ey]移]补(mod2n) 公式参考
- 当 Δ E \Delta E ΔE大于阶码所能表示的最大值时,即溢出时,则无法判断阶差。
- 在IEEE 754中,对于单精度,由于可以表示24位尾数,所以当 Δ E \Delta E ΔE大于24时,则阶数小的数视为0,结果等于阶数大的数。
对阶
将 X m 右 移 Δ e 位 。 X m → X m × 2 − Δ e , 保 留 右 移 出 的 部 分 到 附 加 位 。 将X_m右移\Delta e位。X_m→X_m\times2^{-\Delta e},保留右移出的部分到附加位。 将Xm右移Δe位。Xm→Xm×2−Δe,保留右移出的部分到附加位。
尾数加减
X m × 2 X e − Y e ± Y m X_m\times2^{X_e-Y_e}±Y_m Xm×2Xe−Ye±Ym
将结果规格化
- 当尾数高位为0需左归:每左移一次,阶码减一,直到MSB(最高有效位)为1。
- 当尾数最高位有进位,需右归:每右移一次,阶码加一,直到MSB为1。
- 每次阶码变化,都需要判断阶码是否上溢或下溢。阶码上溢时异常处理,下溢时结果为0。
判断溢出
若运算结果的尾数(包含小数点前的一位)全为0,则下溢。
若最终阶码全为1,则上溢。
舍入
- 就近舍入(默认)
附加位:- 值为01时舍
- 值为11时入
- 值位10时强制结果为偶数
- 往正无穷方向舍入
- 往负无穷方向舍入
- 往0方向舍入
还可以增加一个粘位,精度更高
尾数代表的实际值是0,则将阶码置0。(因为浮点数表示0的格式原因)
附加位
IEEE 754规定:中间结果需在右边加2个附加位。
- 保护位:在有效数字位右边的位
- 舍入位:在保护位右边的位
作用:保存对阶时右移的位或运算的中间结果
处理:左归时被移到有效数字位。作为舍入的依据。
例子
求0.5-0.4375的值
脑补过程:
(
0.5
)
10
=
(
0.1
)
2
=
1.000
×
2
−
1
(0.5)_{10}=(0.1)_2=1.000\times2^{-1}
(0.5)10=(0.1)2=1.000×2−1
(
−
0.4375
)
10
=
(
−
0.0111
)
2
=
−
1.110
×
2
−
2
(-0.4375)_{10}=(-0.0111)_2=-1.110\times2^{-2}
(−0.4375)10=(−0.0111)2=−1.110×2−2
对
阶
:
−
1.110
×
2
−
2
=
−
0.111
×
2
−
1
对阶:-1.110\times2^{-2}=-0.111\times2^{-1}
对阶:−1.110×2−2=−0.111×2−1
相
减
:
1.000
×
2
−
1
−
0.111
×
2
−
1
=
0.001
×
2
−
1
相减:1.000\times2^{-1}-0.111\times2^{-1}=0.001\times2^{-1}
相减:1.000×2−1−0.111×2−1=0.001×2−1
规
格
化
:
0.001
×
2
−
1
=
1.000
×
2
−
4
规格化:0.001\times2^{-1}=1.000\times2^{-4}
规格化:0.001×2−1=1.000×2−4
无
溢
出
无溢出
无溢出
结
果
是
(
0.0001
)
2
=
(
0.0625
)
10
结果是(0.0001)_2=(0.0625)_{10}
结果是(0.0001)2=(0.0625)10
在寄存器中:
-1用移码表示为1111 1111+0111 1111=0111 1110
-2的移码等于-1的移码减1,所以值为0111 1101
-2的变补码为1000 0011(两阶码减法用)
+0.5可表示为0 01111110 00000000000000000000000
-0.4375可表示为1 01111101 11000000000000000000000
Δ
e
=
01111110
+
10000011
=
00000001
>
0
\Delta e=0111 1110+1000 0011=00000001>0
Δe=01111110+10000011=00000001>0
-
对-0.4375进行对阶(3个附加位)
右移1位得:1 01111110 11100000000000000000000 000(红色是移动的位,左边补隐藏位1) -
尾数相加:001.00000000000000000000000 000+100.11100000000000000000000 000=000.00100000000000000000000 000
(过程参考原码加法)- 最高位是符号位,最后三位是附加位
- 小数点前有两位,为了避免两个1相加时产生的进位丢失。
- 有1则需要显示的表示出来,并放在小数点前一位。
- 实际过程没有小数点,这里为了表达清楚。
-
左归:
左移三次:000.00100000000000000000000 000→001.00000000000000000000000
阶码减三次1:01111110→01111011 -
结果:0 01111011 00000000000000000000000