Convolutional Neural Networks with Recurrent Neural Filters 论文阅读笔记

本文探讨了RNFs如何增强CNN处理NLP任务的能力,通过RNN建模卷积滤波器以捕获语言组合和长期依赖信息。在Stanford Sentiment Treebank等数据集上,CNN+RNFs展现出与最佳方法相当的效果,特别是在检测长关键词组时。实验显示RNFs提高了CNN的精确度和MAP准确度,且计算效率更高。
摘要由CSDN通过智能技术生成

前言:研究车道线跟踪滤波的时候遇到了瓶颈,企图加入RNN结构解决,于是调研几篇RNN的论文。关于基础RNN 的介绍,十分推荐这一篇博客:https://blog.csdn.net/zhaojc1995/article/details/80572098

本文题目:Convolutional Neural Networks with Recurrent Neural Filters ;作者Yi Yang;Bloomberg@New York, NY 10022

本文为解决传统卷积滤波器(线性仿射变化加上非线性激活)在语言构成解释方面的不足,用RNN建模了卷积滤波器(RNFs),可以自然地捕捉语言的组合信息和长期依赖信息。并在Stanford Sentiment Treebank数据集和QASent and WikiQA datasets上给出了CNN+RNFs所实现的效果,媲美于已公布的最好的方法(但还是略逊一筹)。

CNN已经在很多NLP任务上实现了很完美的效果,比如句子分类(Yoon Kim. 2014.Convolutional neural networks for sentence classification. In Proceedings of Empirical
Methods for Natural Language Processing (EMNLP).)问答(Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Question answering over freebase with multicolumn
convolutional neural networks. In Proceedings of the Association for Computational Linguistics (ACL).)以及

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>