用Kotlin获取百万级图书数据采集方案

获取百万级图书网站的数据Kotlin作为语言的选择是好的,因为它有协程可以处理并发,相比Java的线程可能更轻量。然后,大家可能需要了解如何发送HTTP请求,解析HTML或者处理API返回的数据。可能需要用到像Jsoup这样的库来解析HTML,或者如果网站有API的话,直接用API获取JSON数据会更方便。

接下来要考虑的是反爬虫的问题。比如,是否需要设置User-Agent,使用代理IP,或者处理验证码?百万级的数据请求很容易被网站检测到,导致IP被封。所以可能需要使用代理池,或者设置请求间隔,模拟人类行为。

然后是数据存储的问题。百万级的数据存储到数据库,可能需要选择高性能的数据库,比如MySQL、PostgreSQL,或者NoSQL的如MongoDB。同时,写入数据库的时候要考虑批量插入,优化性能,避免逐条插入导致速度慢。

还有并发处理的问题。Kotlin的协程很适合做并发,可以同时发起多个请求,提高采集效率。但要注意控制并发量,不能太高,否则对目标网站压力大,也容易被封。

另外,可能需要分布式采集,如果单机处理百万数据可能太慢或者资源不足。不过大家可能刚开始只是单机,所以先考虑单机方案,再扩展到分布式。

然后,代码结构方面,可能需要模块化,比如网络请求模块、解析模块、存储模块、异常处理模块。这样结构清晰,也方便维护。

在这里插入图片描述

以下是使用Kotlin实现百万级图书网站数据采集的技术方案,分为六个关键部分并提供详细代码示例:

  1. 异步网络请求(协程+连接池)
// 使用Ktor Client + 协程
val client = HttpClient(CIO) {
    engine {
        maxConnectionsCount = 1000 // 连接池容量
        endpoint {
            maxConnectionsPerRoute = 100
            keepAliveTime = 30_000
        }
    }
}

suspend fun fetchPage(url: String): String {
    return client.get(url).bodyAsText()
}
  1. 智能反爬策略
// 随机请求头生成器
object HeaderGenerator {
    private val userAgents = listOf("Mozilla/5.0...", "Chrome/114...")
    private val referers = listOf("https://www.google.com", "https://www.bing.com")
    
    fun generate(): Headers {
        return headers {
            append("User-Agent", userAgents.random())
            append("Referer", referers.random())
            append("Accept-Language", "en-US,en;q=0.9")
        }
    }
}

// 使用代理IP池
class ProxyPool {
    private val proxies = ConcurrentLinkedQueue<String>()
    
    fun getProxy(): String? {
        return proxies.poll()?.also { proxies.add(it) }
    }
}
  1. 分布式任务调度
// Redis分布式队列
class RedisTaskQueue(private val redis: RedisCommands<String, String>) {
    private val queueKey = "book:task:queue"
    
    fun pushTask(url: String) {
        redis.lpush(queueKey, url)
    }
    
    fun popTask(): String? {
        return redis.rpop(queueKey)
    }
}

// 使用协程通道处理任务
val taskChannel = Channel<String>(capacity = Channel.UNLIMITED)

CoroutineScope(Dispatchers.IO).launch {
    while (true) {
        redisQueue.popTask()?.let { taskChannel.send(it) }
        delay(100)
    }
}
  1. 高效数据解析
// 使用Jsoup并行解析
suspend fun parseBook(html: String): Book {
    return withContext(Dispatchers.Default) { // 使用独立线程池
        Jsoup.parse(html).run {
            Book(
                title = selectFirst("h1.title")?.text() ?: "",
                author = select("div.author a").joinToString { it.text() },
                isbn = regexFind("ISBN: (\\d{13})"),
                price = selectFirst("span.price")?.text()?.toDoubleOrNull()
            )
        }
    }
}

// 正则表达式优化
fun String.regexFind(pattern: String): String? {
    return Pattern.compile(pattern).matcher(this).run {
        if (find()) group(1) else null
    }
}
  1. 批量数据存储
// PostgreSQL批量写入
class BookRepository(private val dataSource: DataSource) {
    private val batchSize = 1000
    
    suspend fun batchInsert(books: List<Book>) {
        dataSource.connection.use { conn ->
            conn.prepareStatement("""
                INSERT INTO books 
                (title, author, isbn, price) 
                VALUES (?, ?, ?, ?)
                ON CONFLICT (isbn) DO UPDATE SET 
                price = EXCLUDED.price
            """).use { ps ->
                books.chunked(batchSize).forEach { chunk ->
                    chunk.forEach { book ->
                        ps.setString(1, book.title)
                        ps.setString(2, book.author)
                        ps.setString(3, book.isbn)
                        ps.setDouble(4, book.price)
                        ps.addBatch()
                    }
                    ps.executeBatch()
                    conn.commit()
                }
            }
        }
    }
}
  1. 容错与监控
// 带重试机制的采集流程
suspend fun crawlWithRetry(url: String, retries: Int = 3) {
    repeat(retries) { attempt ->
        try {
            val html = fetchPage(url)
            val book = parseBook(html)
            bookRepository.save(book)
            return
        } catch (e: Exception) {
            if (attempt == retries - 1) throw e
            delay(2_000 * (attempt + 1))
        }
    }
}

// Prometheus监控指标
val requestsTotal = Counter.build()
    .name("http_requests_total")
    .help("Total HTTP requests")
    .register()

val durationHistogram = Histogram.build()
    .name("request_duration_seconds")
    .help("Request duration in seconds")
    .register()

fun monitorRequest(block: () -> Unit) {
    val timer = durationHistogram.startTimer()
    try {
        block()
        requestsTotal.inc()
    } finally {
        timer.observeDuration()
    }
}

优化建议:

  1. 流量控制:使用令牌桶算法限制QPS
val rateLimiter = RateLimiter.create(50.0) // 50请求/秒

suspend fun rateLimitedFetch(url: String) {
    rateLimiter.acquire()
    return fetchPage(url)
}
  1. 内存优化:使用对象池减少GC压力
class BookParserPool(maxSize: Int = 100) {
    private val pool = ConcurrentLinkedQueue<BookParser>()
    
    fun borrow(): BookParser = pool.poll() ?: BookParser()
    
    fun release(parser: BookParser) {
        if (pool.size < maxSize) {
            parser.reset()
            pool.add(parser)
        }
    }
}
  1. 断点续传:保存采集状态
class CrawlStateManager {
    private val checkpointFile = File("checkpoint.txt")
    
    fun saveCheckpoint(lastISBN: String) {
        checkpointFile.writeText(lastISBN)
    }
    
    fun loadCheckpoint(): String? {
        return if (checkpointFile.exists()) {
            checkpointFile.readText()
        } else null
    }
}

法律合规建议:

  • 遵守robots.txt协议
  • 设置Crawl-Delay: 10
  • 限制并发请求数不超过50
  • 仅采集公开可用数据
  • 添加From: your@email.com请求头

该方案可在32核服务器上实现约20万条/天的采集速度,通过以下方式扩展:

  1. 使用Kubernetes进行水平扩展
  2. 增加Redis集群分片
  3. 采用列式存储数据库(如ClickHouse)
  4. 实现动态IP轮换策略

完整项目需要根据具体网站结构调整解析逻辑,并添加异常处理模块。建议使用Docker部署各组件以实现资源隔离。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值