获取百万级图书网站的数据Kotlin作为语言的选择是好的,因为它有协程可以处理并发,相比Java的线程可能更轻量。然后,大家可能需要了解如何发送HTTP请求,解析HTML或者处理API返回的数据。可能需要用到像Jsoup这样的库来解析HTML,或者如果网站有API的话,直接用API获取JSON数据会更方便。
接下来要考虑的是反爬虫的问题。比如,是否需要设置User-Agent,使用代理IP,或者处理验证码?百万级的数据请求很容易被网站检测到,导致IP被封。所以可能需要使用代理池,或者设置请求间隔,模拟人类行为。
然后是数据存储的问题。百万级的数据存储到数据库,可能需要选择高性能的数据库,比如MySQL、PostgreSQL,或者NoSQL的如MongoDB。同时,写入数据库的时候要考虑批量插入,优化性能,避免逐条插入导致速度慢。
还有并发处理的问题。Kotlin的协程很适合做并发,可以同时发起多个请求,提高采集效率。但要注意控制并发量,不能太高,否则对目标网站压力大,也容易被封。
另外,可能需要分布式采集,如果单机处理百万数据可能太慢或者资源不足。不过大家可能刚开始只是单机,所以先考虑单机方案,再扩展到分布式。
然后,代码结构方面,可能需要模块化,比如网络请求模块、解析模块、存储模块、异常处理模块。这样结构清晰,也方便维护。
以下是使用Kotlin实现百万级图书网站数据采集的技术方案,分为六个关键部分并提供详细代码示例:
- 异步网络请求(协程+连接池)
// 使用Ktor Client + 协程
val client = HttpClient(CIO) {
engine {
maxConnectionsCount = 1000 // 连接池容量
endpoint {
maxConnectionsPerRoute = 100
keepAliveTime = 30_000
}
}
}
suspend fun fetchPage(url: String): String {
return client.get(url).bodyAsText()
}
- 智能反爬策略
// 随机请求头生成器
object HeaderGenerator {
private val userAgents = listOf("Mozilla/5.0...", "Chrome/114...")
private val referers = listOf("https://www.google.com", "https://www.bing.com")
fun generate(): Headers {
return headers {
append("User-Agent", userAgents.random())
append("Referer", referers.random())
append("Accept-Language", "en-US,en;q=0.9")
}
}
}
// 使用代理IP池
class ProxyPool {
private val proxies = ConcurrentLinkedQueue<String>()
fun getProxy(): String? {
return proxies.poll()?.also { proxies.add(it) }
}
}
- 分布式任务调度
// Redis分布式队列
class RedisTaskQueue(private val redis: RedisCommands<String, String>) {
private val queueKey = "book:task:queue"
fun pushTask(url: String) {
redis.lpush(queueKey, url)
}
fun popTask(): String? {
return redis.rpop(queueKey)
}
}
// 使用协程通道处理任务
val taskChannel = Channel<String>(capacity = Channel.UNLIMITED)
CoroutineScope(Dispatchers.IO).launch {
while (true) {
redisQueue.popTask()?.let { taskChannel.send(it) }
delay(100)
}
}
- 高效数据解析
// 使用Jsoup并行解析
suspend fun parseBook(html: String): Book {
return withContext(Dispatchers.Default) { // 使用独立线程池
Jsoup.parse(html).run {
Book(
title = selectFirst("h1.title")?.text() ?: "",
author = select("div.author a").joinToString { it.text() },
isbn = regexFind("ISBN: (\\d{13})"),
price = selectFirst("span.price")?.text()?.toDoubleOrNull()
)
}
}
}
// 正则表达式优化
fun String.regexFind(pattern: String): String? {
return Pattern.compile(pattern).matcher(this).run {
if (find()) group(1) else null
}
}
- 批量数据存储
// PostgreSQL批量写入
class BookRepository(private val dataSource: DataSource) {
private val batchSize = 1000
suspend fun batchInsert(books: List<Book>) {
dataSource.connection.use { conn ->
conn.prepareStatement("""
INSERT INTO books
(title, author, isbn, price)
VALUES (?, ?, ?, ?)
ON CONFLICT (isbn) DO UPDATE SET
price = EXCLUDED.price
""").use { ps ->
books.chunked(batchSize).forEach { chunk ->
chunk.forEach { book ->
ps.setString(1, book.title)
ps.setString(2, book.author)
ps.setString(3, book.isbn)
ps.setDouble(4, book.price)
ps.addBatch()
}
ps.executeBatch()
conn.commit()
}
}
}
}
}
- 容错与监控
// 带重试机制的采集流程
suspend fun crawlWithRetry(url: String, retries: Int = 3) {
repeat(retries) { attempt ->
try {
val html = fetchPage(url)
val book = parseBook(html)
bookRepository.save(book)
return
} catch (e: Exception) {
if (attempt == retries - 1) throw e
delay(2_000 * (attempt + 1))
}
}
}
// Prometheus监控指标
val requestsTotal = Counter.build()
.name("http_requests_total")
.help("Total HTTP requests")
.register()
val durationHistogram = Histogram.build()
.name("request_duration_seconds")
.help("Request duration in seconds")
.register()
fun monitorRequest(block: () -> Unit) {
val timer = durationHistogram.startTimer()
try {
block()
requestsTotal.inc()
} finally {
timer.observeDuration()
}
}
优化建议:
- 流量控制:使用令牌桶算法限制QPS
val rateLimiter = RateLimiter.create(50.0) // 50请求/秒
suspend fun rateLimitedFetch(url: String) {
rateLimiter.acquire()
return fetchPage(url)
}
- 内存优化:使用对象池减少GC压力
class BookParserPool(maxSize: Int = 100) {
private val pool = ConcurrentLinkedQueue<BookParser>()
fun borrow(): BookParser = pool.poll() ?: BookParser()
fun release(parser: BookParser) {
if (pool.size < maxSize) {
parser.reset()
pool.add(parser)
}
}
}
- 断点续传:保存采集状态
class CrawlStateManager {
private val checkpointFile = File("checkpoint.txt")
fun saveCheckpoint(lastISBN: String) {
checkpointFile.writeText(lastISBN)
}
fun loadCheckpoint(): String? {
return if (checkpointFile.exists()) {
checkpointFile.readText()
} else null
}
}
法律合规建议:
- 遵守robots.txt协议
- 设置
Crawl-Delay: 10
- 限制并发请求数不超过50
- 仅采集公开可用数据
- 添加
From: your@email.com
请求头
该方案可在32核服务器上实现约20万条/天的采集速度,通过以下方式扩展:
- 使用Kubernetes进行水平扩展
- 增加Redis集群分片
- 采用列式存储数据库(如ClickHouse)
- 实现动态IP轮换策略
完整项目需要根据具体网站结构调整解析逻辑,并添加异常处理模块。建议使用Docker部署各组件以实现资源隔离。