【刷题】最小路径之和

该博客介绍了一个LeetCode问题,即寻找网格中从左上角到右下角的最小路径和。题目要求机器人只能向下或向右移动。解决方案是使用动态规划,首先计算第一列和第一行的最小路径,然后根据这些信息逐步计算其他位置的最小路径。最后返回右下角的最小路径值。给出的Python代码实现了这一逻辑。
摘要由CSDN通过智能技术生成

题目描述

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:一个机器人每次只能向下或者向右移动一步。

示例

在这里插入图片描述

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/0i0mDW
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

方法

根据条件只能向右或向下移动则可知:机器人运动的网格grid的第一列和第一行可以优先计算出对应位置最小路径;
然后根据第一列和第一行依次确定除了第一列和第一行之外点的最小路径。
当 前 点 最 小 路 径 值 = 当 前 点 值 + m i n ( 当 前 点 左 侧 值 , 当 前 点 上 方 值 ) 当前点最小路径值 = 当前点值 + min (当前点左侧值,当前点上方值) =+min()

代码

class Solution(object):
    def minPathSum(self, grid):
        """
        :type grid: List[List[int]]
        :rtype: int
        """
        m, n = len(grid), len(grid[0])
        for i in range(1, m):
            grid[i][0] += grid[i-1][0]   # 计算第一列点的最小路径
        for j in range(1, n):
            grid[0][j] += grid[0][j-1]   # 计算第一行点的最小路径
        for i in range(1, m):
            for j in range(1, n):
                grid[i][j] += min(grid[i-1][j], grid[i][j-1])    # 计算除了第一列和第一行的点的最小路径
        return grid[-1][-1]  # 返回右下角点的最小路径值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值