- input :输入张量 kernel_size
- pool的大小,可以是一个单个数字,也可以是一个tuple,如果是单个数字,例如2,就是(2,2) stride:
- pool移动的大小,可以为单个数字,也可以是一个tuple padding :在两侧填充0,可以为单个数字,也可以是一个tuple
- ceil_mode :如果为True,将在公式中使用ceil而不是floor来计算输出形状。 count_include_pad
- 值为true时,将在平均计算中包括零填充,默认为True。 divisor_override
- 如果指定,它将用作除数,否则将使用池化区域的大小。
import torch
import torch.nn.functional as F
F.avg_pool2d(a,(1,2))#输入tensor为a,kernel_size为(1,2)
当输入的kernel为一个数字时:
F.avg_pool2d(a,2)#kernel_size为(2,2)
红框外面的是剩下的,默认不使用,如果想用可以设置ceil_mode ,下面讲解
stride参数的使用:
默认情况下stride大小为kernel_size的大小,这里设为1,就以1为单位向右向下移动。
padding 参数的使用:
在两侧填充0
ceil_mode 参数的使用
如果为True,将在公式中使用ceil而不是floor来计算输出形状
count_include_pad 参数的使用:
值为true时,将在平均计算中包括零填充,默认为True。
divisor_override 参数的使用:
如果指定,它将用作除数,否则将使用池化区域的大小。