如果人工智能是一块蛋糕,那么蛋糕的大部分是自监督学习,蛋糕上的糖衣是监督学习,蛋糕上的樱桃是强化学习(RL)

接触机器学习已有一个月,看了b站视频,李沐,吴恩达,斯坦福。也看了花书,李沐的动手深度学习还有李宏毅的开源书。学了keras,又转了pytorch。运行了几个项目,也看了点论文和代码。感触颇多。属于都涉及了点,但是什么都没有搞懂。
目前仍然像在大海中的孩子,找不到方向。也就是迷茫。
目前打算是找个方向,先看看论文跑跑项目代码。今天看到一句话:
**“如果人工智能是一块蛋糕,那么蛋糕的大部分是自监督学习,蛋糕上的糖衣是监督学习,蛋糕上的樱桃是强化学习(RL)” **
这句话是由知名的人工智能研究者Yann LeCun提出的。
AI给出的解释是:
这个比喻非常生动且贴切地描述了当前人工智能(AI)领域中不同学习方法的相对重要性和它们之间的关系。

人工智能是蛋糕:人工智能作为一个广泛而复杂的领域,包含了众多技术和方法,这些技术和方法共同构成了AI的“蛋糕”。这个蛋糕代表了AI的整体能力和潜力,是各种学习算法、模型、数据处理技术等综合作用的结果。
蛋糕的大部分是自监督学习:自监督学习在AI领域中占据了重要地位,就像蛋糕的主体部分一样。自监督学习允许模型从大量未标注的数据中学习有用的表示和特征,这对于提高模型的泛化能力和处理复杂问题的能力至关重要。随着数据量的爆炸性增长和标注成本的增加,自监督学习在AI研究和应用中变得越来越重要。
蛋糕上的糖衣是监督学习:监督学习作为AI领域中的传统方法,就像蛋糕上的糖衣一样,为AI系统提供了精确和可控的学习方式。在监督学习中,模型通过学习标注好的数据来掌握特定的任务或技能。虽然监督学习在AI发展中起到了关键作用,但随着自监督学习的兴起,其相对重要性可能有所下降,但仍然是AI系统中不可或缺的一部分,为系统提供了精确性和可靠性的保障。
蛋糕上的樱桃是强化学习(RL):强化学习作为AI领域中的一个新兴且强大的工具,就像蛋糕上的樱桃一样,为AI系统增添了额外的魅力和可能性。在强化学习中,模型通过与环境进行交互来学习如何做出决策以最大化某种奖励。这种方法特别适用于需要连续决策和适应环境变化的复杂任务。虽然强化学习在AI中的应用还相对有限,但其潜力巨大,有望在未来成为AI领域中的一颗璀璨明珠。
综上所述,这个比喻很好地概括了当前AI领域中不同学习方法的相对重要性和它们之间的关系。自监督学习作为AI发展的主流趋势,为AI系统提供了强大的基础;监督学习则提供了精确性和可靠性的保障;而强化学习则为AI系统增添了新的可能性和挑战。这三种学习方法相互补充、相互促进,共同推动着AI领域的不断发展和进步。

所以准备开始先定自监督学习作为方向,毕竟他是蛋糕本体,或者大部分。然后看看情况走强化学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值