a表7亿条
b表1亿条
a表
aid c1 c2 c3
b表
bid bvalue
需求:分别用a表的c1 c2 c3与b表的bid关联(left join),获取bvalue 来扩充a表
1.直接写三个left join 发现数据倾斜
2.c1 c2 c3 只关联一次如下,进行查看,发现不会出现数据倾斜
df1=spark.sql("select * from b")
df2=spark.sql("select * from a")
df3=df2.join(df1,df2.c1=df1.bid,left)
df3.show()
3.考虑为什么一次join 不会出现数据倾斜,多次join就会出现
4.因为df3.show() 不会用全部的数据去join,或者说show只会返回部分结果,spark不会用全部数据去计算。多次join,两张表先join(是全量数据),再去和下一个join。
5.查看a表的数据情况,发现c1 为null的情况非常多。
select c1,count(1) as cnt from a group by c1 order by cnt desc;
6.解决办法。虽然c1 c2 c3为null的非常多,但是不能去掉这一行数据。
两张表又都是大表。所以采用 拆分join
由于逻辑c1为null c2 c3必为null,所以有如下sql
df1=spark.sql("select * from a where c1 is not null")
df2=spark.sql(select * from b)
df3=df1.join(df2,xx,xx) 三次join
df4=spark.sql("select * from a where c1 is null")
df4=df4.withColumn('xx',F.array()) 由于bvalue是一个array,所以这里放array
最后df3 df4 union
df5=df3.unionAll(df4)
7.调优前job运行16分钟,调优后58s。
记一次spark两个大表join数据倾斜调优
于 2022-03-18 15:06:33 首次发布
本文探讨了在处理7亿条a表与1亿条b表关联时遇到的数据倾斜问题,通过拆分join操作、针对c1缺失值处理和性能调优,成功将运行时间从16分钟缩短到58秒。关键步骤包括避免全量join、处理null值策略和使用拆分查询策略。
摘要由CSDN通过智能技术生成