记一次spark两个大表join数据倾斜调优

本文探讨了在处理7亿条a表与1亿条b表关联时遇到的数据倾斜问题,通过拆分join操作、针对c1缺失值处理和性能调优,成功将运行时间从16分钟缩短到58秒。关键步骤包括避免全量join、处理null值策略和使用拆分查询策略。
摘要由CSDN通过智能技术生成
a表7亿条
b表1亿条

a表
aid c1 c2 c3
b表
bid bvalue

需求:分别用a表的c1 c2 c3与b表的bid关联(left join),获取bvalue 来扩充a表

1.直接写三个left join 发现数据倾斜
2.c1 c2 c3 只关联一次如下,进行查看,发现不会出现数据倾斜
	df1=spark.sql("select * from b")
	df2=spark.sql("select * from a")
	df3=df2.join(df1,df2.c1=df1.bid,left)
	df3.show()
3.考虑为什么一次join 不会出现数据倾斜,多次join就会出现
4.因为df3.show() 不会用全部的数据去join,或者说show只会返回部分结果,spark不会用全部数据去计算。多次join,两张表先join(是全量数据),再去和下一个join。
5.查看a表的数据情况,发现c1 为null的情况非常多。
	select c1,count(1) as cnt from a group by c1 order by cnt desc;
6.解决办法。虽然c1 c2 c3为null的非常多,但是不能去掉这一行数据。
  两张表又都是大表。所以采用 拆分join
  由于逻辑c1为null c2 c3必为null,所以有如下sql
  df1=spark.sql("select * from a where c1 is not null")
  df2=spark.sql(select * from b)
  df3=df1.join(df2,xx,xx)  三次join

  df4=spark.sql("select * from a where c1 is null")
  df4=df4.withColumn('xx',F.array())  由于bvalue是一个array,所以这里放array

  最后df3 df4 union
  df5=df3.unionAll(df4)

7.调优前job运行16分钟,调优后58s。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

重生之我在异世界打工

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值