OpenCV 图像对象的创建与赋值

一、Mat类知识点:
1、Mat无参构造对象
  (1)、Mat();
  (2)、调用无参构造,不为对象成员变量(数据指针data)分配内存。
  (3)、Mat的成员变量和成员函数都是public类型。
  (4)、测试代码:
     

      cv::Mat m1;
      if (m1.data == nullptr)
      {
          std::cout << "无参构造: m1.data == nullptr" << std::endl;
      }
      输出: 无参构造: m1.data == nullptr


2、Mat有参构造对象并初始化
  (1)、Mat(int rows, int cols, int type, const Scalar & s);
  (2)、调用有参构造,会为对象成员变量(数据指针data)分配内存,并初始化值。
  (3)、参数说明:
      rows: 行数,即高。
      cols: 列数,即宽。
      type: 矩阵类型,如:CV_8UC1、CV_8UC3、CV_32FC3等。
      s: 用于初始化每个像素的值。
  (4)、测试代码: 有参构造对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数,每个像素初始化值BRG = (1, 2, 3))
      

      cv::Mat m2(3, 4, CV_8UC3, cv::Scalar(1, 2, 3));
      std::cout << m2 << std::endl;
      输出:
      [  1,   2,   3,   1,   2,   3,   1,   2,   3,   1,   2,   3;
         1,   2,   3,   1,   2,   3,   1,   2,   3,   1,   2,   3;
         1,   2,   3,   1,   2,   3,   1,   2,   3,   1,   2,   3]


    
3、zeros静态函数创建对象并初始化
  (1)、static UMat zeros(int rows, int cols, int type);
  (2)、返回一个指定大小和类型的零数组对象。
  (3)、参数说明:
      rows: 行数,即高。
      cols: 列数,即宽。
      type: 矩阵类型,如:CV_8UC1、CV_8UC3、CV_32FC3等。
  (4)、测试代码: zeros静态函数创建对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数, 每个像素每个通道值为0)
      

      cv::Mat m3 = cv::Mat::zeros(3, 4, CV_8UC3);
      std::cout << m3 << std::endl;
      输出:
      [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0;
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0;
         0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0]


         
4、ones静态函数创建对象并初始化
  (1)、static UMat ones(int rows, int cols, int type);
  (2)、返回一个指定大小和类型,且每个像素第一个通道为1,其余通道为0的数组对象。
  (3)、参数说明:
      rows: 行数,即高。  
      cols: 列数,即宽。  
      type: 矩阵类型,如:CV_8UC1、CV_8UC3、CV_32FC3等。
  (4)、测试代码: ones静态函数创建对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数, 每个像素第一通道为1,其余通道为0)
    

    cv::Mat m4 = cv::Mat::ones(3, 4, CV_8UC3);
    std::cout << m4 << std::endl;
    输出:
    [  1,   0,   0,   1,   0,   0,   1,   0,   0,   1,   0,   0;
       1,   0,   0,   1,   0,   0,   1,   0,   0,   1,   0,   0;
       1,   0,   0,   1,   0,   0,   1,   0,   0,   1,   0,   0]


         
5、矩阵类型说明:
  (1)、U表示无符号整型(Unsigned),S表示有符号整型(Signed),F表示浮点数(Float),C表示通道数(Channel)。
  (2)、举例说明:
      CV_8UC1  每个像素单通道,每通道8位无符号整数。
      CV_8UC3  每个像素3通道,每通道8位无符号整数。
      CV_8SC1  每个像素单通道,每通道8位有符号整数。
      CV_16UC3 每个像素3通道,每通道16位无符号整数。
      CV_32FC1 每个像素单通道,每通道32位浮点数。
      CV_32FC3 每个像素3通道,每通道32位浮点数。
  (3)、测试代码:
     

      cv::Mat m5 = cv::Mat::zeros(3, 4, CV_8UC1);
      cv::Mat m6 = cv::Mat::zeros(2, 2, CV_8UC3);
      cv::Mat m7 = cv::Mat::zeros(3, 3, CV_32FC1);
      cv::Mat m8 = cv::Mat::zeros(3, 3, CV_32FC3);
      //获取行数、列数、通道数
      std::cout << "height = " << m5.rows << ", width = " << m5.cols << ", channels = " << m5.channels() << std::endl;
      std::cout << "height = " << m6.rows << ", width = " << m6.cols << ", channels = " << m6.channels() << std::endl;
      std::cout << "height = " << m7.rows << ", width = " << m7.cols << ", channels = " << m7.channels() << std::endl;
      std::cout << "height = " << m8.rows << ", width = " << m8.cols << ", channels = " << m8.channels() << std::endl;
      输出: 
      height = 3, width = 4, channels = 1
      height = 2, width = 2, channels = 3
      height = 3, width = 3, channels = 1
      height = 3, width = 3, channels = 3


      
6、操作符=重载Scalar对象
  (1)、Mat & operator = (const Scalar & s);
  (2)、将数组所有或部分元素设置为指定标量值。
  (3)、参数s: 标量值。 一个值对应一个通道,两个值对应两个通道,三个值对应三个通道。
  (4)、测试代码: 将3行4列数组,每个像素第一个通道值赋为127, 第二个通道值赋为111, 第三个通道值赋为80
    

      cv::Mat m9 = cv::Mat::zeros(3, 4, CV_8UC3);
      m9 = cv::Scalar(127, 111, 80);
      std::cout << m9 << std::endl;
      输出:
      [127, 111,  80, 127, 111,  80, 127, 111,  80, 127, 111,  80;
       127, 111,  80, 127, 111,  80, 127, 111,  80, 127, 111,  80;
       127, 111,  80, 127, 111,  80, 127, 111,  80, 127, 111,  80]


     
7、操作符=重载Mat对象
  (1)、Mat & operator = (const Mat & m);
  (2)、将m对象的值赋值给本对象。
  (3)、注意,不是深拷贝,只是简单将m的成员指针赋值给本对象的成员指针变量,所以本对象和m对象共享数据内存。
  (4)、测试代码: 操作符=重载Mat对象(m10分配数据内存,每个像素BGR = (80, 100, 120),m10给m11赋值后,m11每个像素BGR = (111, 112, 113),m10也同时被改)
    

      cv::Mat m10(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
      cv::Mat m11;
      m11 = m10;
      m11 = cv::Scalar(111, 112, 113);
      std::cout << m10 << std::endl;
      std::cout << m11 << std::endl;
      输出:
      [111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
       111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
       111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113]
      [111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
       111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
       111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113]

8、clone()函数赋值
  (1)、Mat clone() const;
  (2)、返回一个新的Mat对象,新Mat对象和原本对象有同样大小的内存分配,有同样的数据。
  (3)、测试代码: clone()测试(m12分配数据内存,每个像素BGR = (80, 100, 120)。m12调用clone(),返回一个新的Mat对象,和m12有同样大小的内存和数据,新对象给m13赋值,m13共享新对象内存,因此m13和m12两块内存,互不影响)
      

      cv::Mat m12(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
      cv::Mat m13;
      m13 = m12.clone();
      m13 = cv::Scalar(111, 112, 113);
      std::cout << m12 << std::endl;
      std::cout << m13 << std::endl;
      输出:
      [ 80, 100, 120,  80, 100, 120,  80, 100, 120,  80, 100, 120;
        80, 100, 120,  80, 100, 120,  80, 100, 120,  80, 100, 120;
        80, 100, 120,  80, 100, 120,  80, 100, 120,  80, 100, 120]
      [111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
       111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
       111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113]

9、copyTo()函数赋值
  (1)、void copyTo( OutputArray m ) const;
  (2)、将m分配和本对象同样大小的数据内存,并将本对象的数据拷贝到m的内存中。
  (3)、测试代码: copyTo()测试(m14分配数据内存,每个像素BGR = (80, 100, 120)。m14调用copyTo(),将m15分配和m14同样大小的内存,并将m14的数据拷贝到m15的内存中。因此m14和m15两块内存,互不影响)
  

    cv::Mat m14(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
    cv::Mat m15;
    m14.copyTo(m15);
    m15 = cv::Scalar(111, 112, 113);
    std::cout << m14 << std::endl;
    std::cout << m15 << std::endl;
    输出:
    [ 80, 100, 120,  80, 100, 120,  80, 100, 120,  80, 100, 120;
      80, 100, 120,  80, 100, 120,  80, 100, 120,  80, 100, 120;
      80, 100, 120,  80, 100, 120,  80, 100, 120,  80, 100, 120]
    [111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
     111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
     111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113]


二、示例代码:

#include <iostream>
#include <opencv2/opencv.hpp>


int main()
{
    //无参构造对象
    cv::Mat m1;
    if (m1.data == nullptr)
    {
        std::cout << "无参构造: m1.data == nullptr" << std::endl;
    }

    //有参构造对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数,每个像素初始化值BRG = (1, 2, 3))
    cv::Mat m2(3, 4, CV_8UC3, cv::Scalar(1, 2, 3));
    std::cout << m2 << std::endl;

    //zeros静态函数创建对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数, 每个像素每个通道值为0)
    cv::Mat m3 = cv::Mat::zeros(3, 4, CV_8UC3);
    std::cout << m3 << std::endl;

    //ones静态函数创建对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数, 每个像素第一通道为1,其余通道为0)
    cv::Mat m4 = cv::Mat::ones(3, 4, CV_8UC3);
    std::cout << m4 << std::endl;

    //U表示无符号整型(Unsigned),S表示有符号整型(Signed),F表示浮点数(Float),C表示通道数(Channel)
    cv::Mat m5 = cv::Mat::zeros(3, 4, CV_8UC1);
    cv::Mat m6 = cv::Mat::zeros(2, 2, CV_8UC3);
    cv::Mat m7 = cv::Mat::zeros(3, 3, CV_32FC1);
    cv::Mat m8 = cv::Mat::zeros(3, 3, CV_32FC3);
    //获取行数、列数、通道数
    std::cout << "height = " << m5.rows << ", width = " << m5.cols << ", channels = " << m5.channels() << std::endl;
    std::cout << "height = " << m6.rows << ", width = " << m6.cols << ", channels = " << m6.channels() << std::endl;
    std::cout << "height = " << m7.rows << ", width = " << m7.cols << ", channels = " << m7.channels() << std::endl;
    std::cout << "height = " << m8.rows << ", width = " << m8.cols << ", channels = " << m8.channels() << std::endl;

    //操作符=重载Scalar对象(将3行4列数组,每个像素第一个通道值赋为127, 第二个通道值赋为111, 第三个通道值赋为80)
    cv::Mat m9 = cv::Mat::zeros(3, 4, CV_8UC3);
    m9 = cv::Scalar(127, 111, 80);
    std::cout << m9 << std::endl;

    //操作符=重载Mat对象(m10分配数据内存,每个像素BGR = (80, 100, 120),m10给m11赋值后,m11每个像素BGR = (111, 112, 113),m10也同时被改)
    cv::Mat m10(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
    cv::Mat m11;
    m11 = m10;
    m11 = cv::Scalar(111, 112, 113);
    std::cout << m10 << std::endl;
    std::cout << m11 << std::endl;

    //clone()测试(m12分配数据内存,每个像素BGR = (80, 100, 120)。m12调用clone(),返回一个新的Mat对象,和m12有同样大小的内存和数据。
    //新对象给m13赋值,m13共享新对象内存,因此m13和m12两块内存,互不影响)
    cv::Mat m12(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
    cv::Mat m13;
    m13 = m12.clone();
    m13 = cv::Scalar(111, 112, 113);
    std::cout << m12 << std::endl;
    std::cout << m13 << std::endl;

    //copyTo()测试(m14分配数据内存,每个像素BGR = (80, 100, 120)。m14调用copyTo(),将m15分配和m14同样大小的内存,并将m14的数据拷贝到m15的内存中。因此m14和m15两块内存,互不影响)
    cv::Mat m14(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
    cv::Mat m15;
    m14.copyTo(m15);
    m15 = cv::Scalar(111, 112, 113);
    std::cout << m14 << std::endl;
    std::cout << m15 << std::endl;

    system("pause");
    return 0;
}


      
       


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清醒的兰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值