一、Mat类知识点:
1、Mat无参构造对象
(1)、Mat();
(2)、调用无参构造,不为对象成员变量(数据指针data)分配内存。
(3)、Mat的成员变量和成员函数都是public类型。
(4)、测试代码:
cv::Mat m1;
if (m1.data == nullptr)
{
std::cout << "无参构造: m1.data == nullptr" << std::endl;
}
输出: 无参构造: m1.data == nullptr
2、Mat有参构造对象并初始化
(1)、Mat(int rows, int cols, int type, const Scalar & s);
(2)、调用有参构造,会为对象成员变量(数据指针data)分配内存,并初始化值。
(3)、参数说明:
rows: 行数,即高。
cols: 列数,即宽。
type: 矩阵类型,如:CV_8UC1、CV_8UC3、CV_32FC3等。
s: 用于初始化每个像素的值。
(4)、测试代码: 有参构造对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数,每个像素初始化值BRG = (1, 2, 3))
cv::Mat m2(3, 4, CV_8UC3, cv::Scalar(1, 2, 3));
std::cout << m2 << std::endl;
输出:
[ 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3;
1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3;
1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
3、zeros静态函数创建对象并初始化
(1)、static UMat zeros(int rows, int cols, int type);
(2)、返回一个指定大小和类型的零数组对象。
(3)、参数说明:
rows: 行数,即高。
cols: 列数,即宽。
type: 矩阵类型,如:CV_8UC1、CV_8UC3、CV_32FC3等。
(4)、测试代码: zeros静态函数创建对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数, 每个像素每个通道值为0)
cv::Mat m3 = cv::Mat::zeros(3, 4, CV_8UC3);
std::cout << m3 << std::endl;
输出:
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
4、ones静态函数创建对象并初始化
(1)、static UMat ones(int rows, int cols, int type);
(2)、返回一个指定大小和类型,且每个像素第一个通道为1,其余通道为0的数组对象。
(3)、参数说明:
rows: 行数,即高。
cols: 列数,即宽。
type: 矩阵类型,如:CV_8UC1、CV_8UC3、CV_32FC3等。
(4)、测试代码: ones静态函数创建对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数, 每个像素第一通道为1,其余通道为0)
cv::Mat m4 = cv::Mat::ones(3, 4, CV_8UC3);
std::cout << m4 << std::endl;
输出:
[ 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0;
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0;
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]
5、矩阵类型说明:
(1)、U表示无符号整型(Unsigned),S表示有符号整型(Signed),F表示浮点数(Float),C表示通道数(Channel)。
(2)、举例说明:
CV_8UC1 每个像素单通道,每通道8位无符号整数。
CV_8UC3 每个像素3通道,每通道8位无符号整数。
CV_8SC1 每个像素单通道,每通道8位有符号整数。
CV_16UC3 每个像素3通道,每通道16位无符号整数。
CV_32FC1 每个像素单通道,每通道32位浮点数。
CV_32FC3 每个像素3通道,每通道32位浮点数。
(3)、测试代码:
cv::Mat m5 = cv::Mat::zeros(3, 4, CV_8UC1);
cv::Mat m6 = cv::Mat::zeros(2, 2, CV_8UC3);
cv::Mat m7 = cv::Mat::zeros(3, 3, CV_32FC1);
cv::Mat m8 = cv::Mat::zeros(3, 3, CV_32FC3);
//获取行数、列数、通道数
std::cout << "height = " << m5.rows << ", width = " << m5.cols << ", channels = " << m5.channels() << std::endl;
std::cout << "height = " << m6.rows << ", width = " << m6.cols << ", channels = " << m6.channels() << std::endl;
std::cout << "height = " << m7.rows << ", width = " << m7.cols << ", channels = " << m7.channels() << std::endl;
std::cout << "height = " << m8.rows << ", width = " << m8.cols << ", channels = " << m8.channels() << std::endl;
输出:
height = 3, width = 4, channels = 1
height = 2, width = 2, channels = 3
height = 3, width = 3, channels = 1
height = 3, width = 3, channels = 3
6、操作符=重载Scalar对象
(1)、Mat & operator = (const Scalar & s);
(2)、将数组所有或部分元素设置为指定标量值。
(3)、参数s: 标量值。 一个值对应一个通道,两个值对应两个通道,三个值对应三个通道。
(4)、测试代码: 将3行4列数组,每个像素第一个通道值赋为127, 第二个通道值赋为111, 第三个通道值赋为80
cv::Mat m9 = cv::Mat::zeros(3, 4, CV_8UC3);
m9 = cv::Scalar(127, 111, 80);
std::cout << m9 << std::endl;
输出:
[127, 111, 80, 127, 111, 80, 127, 111, 80, 127, 111, 80;
127, 111, 80, 127, 111, 80, 127, 111, 80, 127, 111, 80;
127, 111, 80, 127, 111, 80, 127, 111, 80, 127, 111, 80]
7、操作符=重载Mat对象
(1)、Mat & operator = (const Mat & m);
(2)、将m对象的值赋值给本对象。
(3)、注意,不是深拷贝,只是简单将m的成员指针赋值给本对象的成员指针变量,所以本对象和m对象共享数据内存。
(4)、测试代码: 操作符=重载Mat对象(m10分配数据内存,每个像素BGR = (80, 100, 120),m10给m11赋值后,m11每个像素BGR = (111, 112, 113),m10也同时被改)
cv::Mat m10(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
cv::Mat m11;
m11 = m10;
m11 = cv::Scalar(111, 112, 113);
std::cout << m10 << std::endl;
std::cout << m11 << std::endl;
输出:
[111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113]
[111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113]
8、clone()函数赋值
(1)、Mat clone() const;
(2)、返回一个新的Mat对象,新Mat对象和原本对象有同样大小的内存分配,有同样的数据。
(3)、测试代码: clone()测试(m12分配数据内存,每个像素BGR = (80, 100, 120)。m12调用clone(),返回一个新的Mat对象,和m12有同样大小的内存和数据,新对象给m13赋值,m13共享新对象内存,因此m13和m12两块内存,互不影响)
cv::Mat m12(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
cv::Mat m13;
m13 = m12.clone();
m13 = cv::Scalar(111, 112, 113);
std::cout << m12 << std::endl;
std::cout << m13 << std::endl;
输出:
[ 80, 100, 120, 80, 100, 120, 80, 100, 120, 80, 100, 120;
80, 100, 120, 80, 100, 120, 80, 100, 120, 80, 100, 120;
80, 100, 120, 80, 100, 120, 80, 100, 120, 80, 100, 120]
[111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113]
9、copyTo()函数赋值
(1)、void copyTo( OutputArray m ) const;
(2)、将m分配和本对象同样大小的数据内存,并将本对象的数据拷贝到m的内存中。
(3)、测试代码: copyTo()测试(m14分配数据内存,每个像素BGR = (80, 100, 120)。m14调用copyTo(),将m15分配和m14同样大小的内存,并将m14的数据拷贝到m15的内存中。因此m14和m15两块内存,互不影响)
cv::Mat m14(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
cv::Mat m15;
m14.copyTo(m15);
m15 = cv::Scalar(111, 112, 113);
std::cout << m14 << std::endl;
std::cout << m15 << std::endl;
输出:
[ 80, 100, 120, 80, 100, 120, 80, 100, 120, 80, 100, 120;
80, 100, 120, 80, 100, 120, 80, 100, 120, 80, 100, 120;
80, 100, 120, 80, 100, 120, 80, 100, 120, 80, 100, 120]
[111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113;
111, 112, 113, 111, 112, 113, 111, 112, 113, 111, 112, 113]
二、示例代码:
#include <iostream>
#include <opencv2/opencv.hpp>
int main()
{
//无参构造对象
cv::Mat m1;
if (m1.data == nullptr)
{
std::cout << "无参构造: m1.data == nullptr" << std::endl;
}
//有参构造对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数,每个像素初始化值BRG = (1, 2, 3))
cv::Mat m2(3, 4, CV_8UC3, cv::Scalar(1, 2, 3));
std::cout << m2 << std::endl;
//zeros静态函数创建对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数, 每个像素每个通道值为0)
cv::Mat m3 = cv::Mat::zeros(3, 4, CV_8UC3);
std::cout << m3 << std::endl;
//ones静态函数创建对象并初始化(3行4列,每个像素3个通道,每个通道8位无符号整数, 每个像素第一通道为1,其余通道为0)
cv::Mat m4 = cv::Mat::ones(3, 4, CV_8UC3);
std::cout << m4 << std::endl;
//U表示无符号整型(Unsigned),S表示有符号整型(Signed),F表示浮点数(Float),C表示通道数(Channel)
cv::Mat m5 = cv::Mat::zeros(3, 4, CV_8UC1);
cv::Mat m6 = cv::Mat::zeros(2, 2, CV_8UC3);
cv::Mat m7 = cv::Mat::zeros(3, 3, CV_32FC1);
cv::Mat m8 = cv::Mat::zeros(3, 3, CV_32FC3);
//获取行数、列数、通道数
std::cout << "height = " << m5.rows << ", width = " << m5.cols << ", channels = " << m5.channels() << std::endl;
std::cout << "height = " << m6.rows << ", width = " << m6.cols << ", channels = " << m6.channels() << std::endl;
std::cout << "height = " << m7.rows << ", width = " << m7.cols << ", channels = " << m7.channels() << std::endl;
std::cout << "height = " << m8.rows << ", width = " << m8.cols << ", channels = " << m8.channels() << std::endl;
//操作符=重载Scalar对象(将3行4列数组,每个像素第一个通道值赋为127, 第二个通道值赋为111, 第三个通道值赋为80)
cv::Mat m9 = cv::Mat::zeros(3, 4, CV_8UC3);
m9 = cv::Scalar(127, 111, 80);
std::cout << m9 << std::endl;
//操作符=重载Mat对象(m10分配数据内存,每个像素BGR = (80, 100, 120),m10给m11赋值后,m11每个像素BGR = (111, 112, 113),m10也同时被改)
cv::Mat m10(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
cv::Mat m11;
m11 = m10;
m11 = cv::Scalar(111, 112, 113);
std::cout << m10 << std::endl;
std::cout << m11 << std::endl;
//clone()测试(m12分配数据内存,每个像素BGR = (80, 100, 120)。m12调用clone(),返回一个新的Mat对象,和m12有同样大小的内存和数据。
//新对象给m13赋值,m13共享新对象内存,因此m13和m12两块内存,互不影响)
cv::Mat m12(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
cv::Mat m13;
m13 = m12.clone();
m13 = cv::Scalar(111, 112, 113);
std::cout << m12 << std::endl;
std::cout << m13 << std::endl;
//copyTo()测试(m14分配数据内存,每个像素BGR = (80, 100, 120)。m14调用copyTo(),将m15分配和m14同样大小的内存,并将m14的数据拷贝到m15的内存中。因此m14和m15两块内存,互不影响)
cv::Mat m14(3, 4, CV_8UC3, cv::Scalar(80, 100, 120));
cv::Mat m15;
m14.copyTo(m15);
m15 = cv::Scalar(111, 112, 113);
std::cout << m14 << std::endl;
std::cout << m15 << std::endl;
system("pause");
return 0;
}