第454题.四数相加II
给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足:
0 <= i, j, k, l < n
nums1[i] + nums2[j] + nums3[k] + nums4[l] == 0
输入:nums1 = [1,2], nums2 = [-2,-1], nums3 = [-1,2], nums4 = [0,2]
输出:2
解释:
两个元组如下:
- (0, 0, 0, 1) -> nums1[0] + nums2[0] + nums3[0] + nums4[1] = 1 + (-2) + (-1) + 2 = 0
- (1, 1, 0, 0) -> nums1[1] + nums2[1] + nums3[0] + nums4[0] = 2 + (-1) + (-1) + 0 = 0
输入: nums1 = [0], nums2 = [0], nums3 = [0], nums4 = [0]
输出: 1
class Solution {
public:
int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
// 遍历 A 和 B 所有元素和的组合情况,并记录在 ab_map 中,ab_map 的 key 为两数和,value 为该两数和出现的次数
// 遍历 C 和 D 所有元素和的组合情况,取和的负值判断其是否在 ab_map 中,若存在则取出 ab_map 对应的 value 值,count = count + value
unordered_map<int,int>hash; //key为a+b的数值,value为出现的次数
for(int a : nums1)
{ // 遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中
for(int b : nums2)
{
hash[a+b]++;
}
}
int count = 0; //统计a+b+c+d=0的次数
for(int c : nums3)
{
for(int d : nums4)
{
if(hash.find(0-(c+d)) !=hash.end())
{
count+=hash[0-(c+d)]; //0-(c+d) 的次数就是a+b的次数
}
}
}
return count;
}
};
思考:
- 这道题也是寻找元素想到用哈希表
- 为什么分成A,B和C,D俩部分,而不是ABC和D这俩部分?
ABC整体的话时间复杂度为(n3),而俩部分的只有(n2)+(n2)还是(n2)
本题解题步骤:
- 首先定义 一个unordered_map,key放a和b两数之和,value 放a和b两数之和出现的次数。
- 遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中。
- 定义int变量count,用来统计 a+b+c+d = 0 出现的次数。
- 在遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就用count把map中key对应的value也就是出现次数统计出来。
- 最后返回统计值 count 就可以了
383. 赎金信
给你两个字符串:ransomNote 和 magazine ,判断 ransomNote 能不能由 magazine 里面的字符构成。
如果可以,返回 true ;否则返回 false 。
magazine 中的每个字符只能在 ransomNote 中使用一次。
输入: ransomNote = "a", magazine = "b"
输出: false
输入: ransomNote = "aa", magazine = "ab"
输出: false
本题与有效的字母异位词类似,(具体思路可见该题))只是最后的判定条件不一样,注意遍历字符串的顺序决定了最后判定的条件。
方法一-哈希表
class Solution {
public:
bool canConstruct(string ransomNote, string magazine) {
int hash[26]={0};
if(ransomNote.size()>magazine.size()) return false;
for(auto i : magazine)
{
hash[i-'a']++;
}
for(auto j: ransomNote)
{
hash[j-'a']--;
}
for(auto i: hash)
{
if(i<0) return false; //说明magazine没有ransomNote的元素
}
return true;
}
};
思考:
- 注意这边遍历的时候i或者j已经是char类型了,不需要再加 hash[magazine[[i]-‘a’]++;
15. 三数之和
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请
你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
方法一-双指针
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(),nums.end()); //利用双指针法需要先排序
// 找出a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
for(int i=0;i<nums.size();i++)
{
if(nums[i]>0) return result;
//三元组中第一个为正数后面不可能等于0
// 错误去重a方法,将会漏掉-1,-1,2 这种情况
/*
if (nums[i] == nums[i + 1]) {
continue;
}
*/
// 正确去重a方法
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left =i+1;
int right=nums.size()-1;
while(left<right) //left==right不成立,三元组中每一个都不同
{
// 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
/*
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
*/
if(nums[i]+nums[left]+nums[right]>0) right--;
else if(nums[i]+nums[left]+nums[right]<0) left++;
else{
result.push_back(vector<int>{nums[i],nums[left],nums[right]});
// 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
return result;
}
};
思考:
- 因为有去重操作所以哈希法有点麻烦,用双指针法(类似俩数之和)
- 去重时,有很多需要考虑的地方
注意的是不能有重复的三元组,但三元组内的元素是可以重复的!
18. 四数之和
给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):
0 <= a, b, c, d < n
a、b、c 和 d 互不相同
nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。
输入: nums = [1,0,-1,0,-2,2], target = 0
输出: [[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
输入: nums = [2,2,2,2,2], target = 8
输出: [[2,2,2,2]]
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); k++) {
// 剪枝处理
if (nums[k] > target && nums[k] >= 0) {
break; // 这里使用break,统一通过最后的return返回
}
// 对nums[k]去重
if (k > 0 && nums[k] == nums[k - 1]) {
continue;
}
for (int i = k + 1; i < nums.size(); i++) {
// 2级剪枝处理
if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
break;
}
// 对nums[i]去重
if (i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
right--;
// nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出
} else if ((long) nums[k] + nums[i] + nums[left] + nums[right] < target) {
left++;
} else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
// 对nums[left]和nums[right]去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
}
return result;
}
};