ATLAS
文章平均质量分 97
HENECIA_AQ
炼丹的兔子,兴趣安全研究。阿里云安全在职,欢迎大家有问题留言交流探讨。
展开
-
ATLAS——对抗性机器学习威胁矩阵<案例研究三、四、五>
VirusTotal调查不正常的勒索软件家族的报告有所增加时,我们发现该特定勒索软件家族的许多样本是在短时间内通过流行的病毒共享平台提交的。进一步调查显示,根据字符串相似度,样本都是等效的,根据代码相似度,它们的相似度在 98% 到 74% 之间。有趣的是,所有示例的编译时间都是相同的。;Skylight 的研究人员能够创建一个通用绕过字符串,该字符串附加到恶意文件后可以逃避 Cylance 的 AI 恶意软件检测器的检测。原创 2023-11-03 17:03:55 · 712 阅读 · 0 评论 -
ATLAS——对抗性机器学习威胁矩阵<案例研究二>
算法攻击对抗学习dga检测Palo Alto Networks Security AI 研究团队能够通过域名变形,来绕过基于卷积神经网络 (CNN) 的僵尸网络域生成算法 (DGA) 检测。它是一种通用的域名变形技术,可以避开大多数基于 ML 的 DGA 检测模块。这种通用变形技术还可以用于测试安全公司开发的所有 DGA 检测方法在部署到生产环境之前的有效性和鲁棒性。原创 2023-10-24 17:15:17 · 376 阅读 · 0 评论 -
ATLAS——对抗性机器学习威胁矩阵<案例研究一>
Adversarial ML Threat Matrix——对抗性机器学习威胁矩阵<案例研究> 针对恶意软件 C&C 流量的深度学习检测器规避1:案例摘要 Palo Alto Networks Security AI 研究团队测试了一个深度学习模型,用于检测 HTTP 流量中的恶意C&C流量。该模型基于论文《URLNet: Learning a URL Representation with Deep Learning forMalicious URL Detection》,在生产模型相似的数据原创 2022-05-25 15:17:30 · 1501 阅读 · 0 评论 -
ATLAS——对抗性机器学习威胁矩阵<简介>
相信有过安全分析工作经验的友友们对ATT&CK矩阵并不陌生,而对抗性机器学习威胁矩阵就是在机器学习攻防技术博弈的发展上,为了安全分析师能够将自己定位到这些新的和即将到来的威胁,参照ATT&CK矩阵技术的框架设计,来定位对机器学习 (ML) 系统的攻击。该框架植入了一系列精心策划的漏洞和攻击行为,微软和 MITRE 已经审查过这些漏洞和攻击行为对生产环境中机器学习系统有效。原创 2021-12-13 12:12:44 · 5271 阅读 · 0 评论