题意 及ac通道
题意简化版:
给定一个长度为n的序列。
有m次询问,每次询问给定两个数si,di。你一开始站在0,每次你可以走不超过di,但你到达的位置的数不能超过si。问能否走到n+1。
把询问按照si从小到大排序。每次会多一些能走的位置。用线段树维护不能走的位置的最长连续长度。
时间复杂度O((n+m)logn)
和这道题很像
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1000100;
struct node{
int l,r,lmax,rmax,maxx; // 左端点 右端点 以左端点为起点的最大连续不可走的长度 以右端点—— 区间最长不可走的距离
}t[MAXN*4+100];
int J[MAXN];
struct JKX{
int x,d,id;
}X[MAXN],S[MAXN];
int N,B;
bool myc(JKX a,JKX b) {return a.x<b.x;}
void build(int k,int l,int r)
{
t[k].l=l; t[k].r=r;
if(l==r) { t[k].lmax=t[k].rmax=t[k].maxx=1; return;}
int mid=(l+r)/2;
build(k*2,l,mid);
build(k*2+1,mid+1,r); // // 和处理最大子段和相似 只要中间断开就不能用
if(t[k*2].r-t[k*2].l+1==t[k*2].maxx) t[k].lmax=t[k*2].maxx+t[k*2+1].lmax; else t[k].lmax=t[k*2].lmax;
if(t[k*2+1].r-t[k*2+1].l+1==t[k*2+1].maxx) t[k].rmax=t[k*2+1].maxx+t[k*2].rmax; else t[k].rmax=t[k*2+1].rmax;
t[k].maxx=max(t[k*2+1].maxx,t[k*2].maxx);
t[k].maxx=max(t[k*2].rmax+t[k*2+1].lmax,t[k].maxx);
}
void change(int k,int num)
{
if(t[k].l==t[k].r) { t[k].lmax=t[k].rmax=t[k].maxx=0; return;}
int mid=(t[k].l+t[k].r)/2;
if(num<=mid) change(k*2,num);
else change(k*2+1,num);
if(t[k*2].r-t[k*2].l+1==t[k*2].maxx) t[k].lmax=t[k*2].maxx+t[k*2+1].lmax; else t[k].lmax=t[k*2].lmax;
if(t[k*2+1].r-t[k*2+1].l+1==t[k*2+1].maxx) t[k].rmax=t[k*2+1].maxx+t[k*2].rmax; else t[k].rmax=t[k*2+1].rmax;
t[k].maxx=max(t[k*2+1].maxx,t[k*2].maxx);
t[k].maxx=max(t[k*2].rmax+t[k*2+1].lmax,t[k].maxx);
}
int main()
{
scanf("%d%d",&N,&B);
for(int i=1;i<=N;i++) {scanf("%d",&S[i].x); S[i].id=i;}
for(int i=1;i<=B;i++) {scanf("%d%d",&X[i].x,&X[i].d); X[i].id=i;}
sort(S+1,S+N+1,myc); //排序的意图在于 每次加进来的能走的都会多一点
sort(X+1,X+B+1,myc);
build(1,1,N); // 开始建树的时候 初值为任何一个点都是不满足的。
//for(int i=1;i<=N;i++) printf("%d\n",S[i].x);
int sid=0;
for(int xid=1;xid<=B;xid++)
{
while(sid<N && S[sid+1].x<=X[xid].x)
{
change(1,S[sid+1].id);sid++; //能走 修改 某值 为 0
}
if(t[1].maxx<X[xid].d) J[X[xid].id]=1;
}
for(int i=1;i<=B;i++) printf("%d\n",J[i]);
return 0;
}