bzoj5194 Snow Boots

题意 及ac通道
题意简化版:
给定一个长度为n的序列。
有m次询问,每次询问给定两个数si,di。你一开始站在0,每次你可以走不超过di,但你到达的位置的数不能超过si。问能否走到n+1。

把询问按照si从小到大排序。每次会多一些能走的位置。用线段树维护不能走的位置的最长连续长度。
时间复杂度O((n+m)logn)
和这道题很像

#include<bits/stdc++.h>
 using namespace std;
const int MAXN=1000100;
struct node{
  int l,r,lmax,rmax,maxx; // 左端点 右端点 以左端点为起点的最大连续不可走的长度 以右端点——   区间最长不可走的距离 
}t[MAXN*4+100];
int J[MAXN];
struct JKX{
   int x,d,id;
}X[MAXN],S[MAXN];
int N,B;
bool myc(JKX a,JKX b) {return a.x<b.x;}
void build(int k,int l,int r)
{
  t[k].l=l; t[k].r=r;
  if(l==r) { t[k].lmax=t[k].rmax=t[k].maxx=1; return;}
  int mid=(l+r)/2;
  build(k*2,l,mid);
  build(k*2+1,mid+1,r);     // // 和处理最大子段和相似  只要中间断开就不能用  
  if(t[k*2].r-t[k*2].l+1==t[k*2].maxx) t[k].lmax=t[k*2].maxx+t[k*2+1].lmax; else t[k].lmax=t[k*2].lmax;
  if(t[k*2+1].r-t[k*2+1].l+1==t[k*2+1].maxx) t[k].rmax=t[k*2+1].maxx+t[k*2].rmax; else t[k].rmax=t[k*2+1].rmax;
  t[k].maxx=max(t[k*2+1].maxx,t[k*2].maxx);
  t[k].maxx=max(t[k*2].rmax+t[k*2+1].lmax,t[k].maxx);
}
void change(int k,int num)
{
  if(t[k].l==t[k].r) { t[k].lmax=t[k].rmax=t[k].maxx=0; return;}
  int mid=(t[k].l+t[k].r)/2;
  if(num<=mid) change(k*2,num);
   else change(k*2+1,num);
  if(t[k*2].r-t[k*2].l+1==t[k*2].maxx) t[k].lmax=t[k*2].maxx+t[k*2+1].lmax; else t[k].lmax=t[k*2].lmax;
  if(t[k*2+1].r-t[k*2+1].l+1==t[k*2+1].maxx) t[k].rmax=t[k*2+1].maxx+t[k*2].rmax; else t[k].rmax=t[k*2+1].rmax;
  t[k].maxx=max(t[k*2+1].maxx,t[k*2].maxx);
  t[k].maxx=max(t[k*2].rmax+t[k*2+1].lmax,t[k].maxx);
}
int main()
{
  scanf("%d%d",&N,&B);
  for(int i=1;i<=N;i++)  {scanf("%d",&S[i].x); S[i].id=i;}
  for(int i=1;i<=B;i++)  {scanf("%d%d",&X[i].x,&X[i].d); X[i].id=i;}
  sort(S+1,S+N+1,myc); //排序的意图在于 每次加进来的能走的都会多一点 
  sort(X+1,X+B+1,myc); 
  build(1,1,N); // 开始建树的时候 初值为任何一个点都是不满足的。 
//for(int i=1;i<=N;i++) printf("%d\n",S[i].x);
  int sid=0;
  for(int xid=1;xid<=B;xid++)
  {
  	 while(sid<N && S[sid+1].x<=X[xid].x)
  	 {
  	   change(1,S[sid+1].id);sid++; //能走 修改 某值 为 0 
	 }
	 if(t[1].maxx<X[xid].d) J[X[xid].id]=1;
  }
  for(int i=1;i<=B;i++) printf("%d\n",J[i]); 
  return 0;	
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值