致那些正在入坑或纠结要不要入坑数学建模的小白们:来自一名大三狗的心路历程——愿你们少走些弯路,多取得些成绩

2021年2月9日,上午6点18分,发送到solutions@comap.com的邮件投递成功,我的2021年美赛终于落幕。与此同时,我大学三年的数学建模征途也画上了完美的句号,我打趣地与陪我建模三年的队友调侃道:“哈哈,我们圆满了。”

在这里插入图片描述

美赛之后的春节假期,闲来无事的我回顾起来自己的建模之旅:开始入坑时的无从下手、初次建模失败的伤心难过、摸爬滚打后的茅塞顿开、第一次拿奖的满心欢喜,多少个彻夜建模的夜晚好像就发生的昨天,一张张得之不易的奖状依然历历在目……寒假结束,就是大三下学期了,一只大三狗开始为将来去哪里上学做最后半年的冲刺了。于是,我思考着,似乎有写点东西的必要了,既是为了重拾自己的初心、坚定自己圆梦梦校的信念,更是为了想让后来的人能从我的经历中有所收获,少走些弯路,多取得些成绩。

本文写给那些正在或正纠结要不要入坑数学建模,以及初入大学不知如何规划未来四年的小白萌新们,希望能或多或少给大家带来一些启发

1.《相遇篇》——为什么想建模?

为什么想建模?不知道大家是否思考过这个问题。我当初想建模的理由很简单,就是觉得“数学建模”这个词听起来很酷!很man!利用数学工具去刻画、去描绘世界的运行规律,岂不是太牛了?!

那时的我正在读大一下学期,一方面是主观地想去建模,另一方面客观地认为自己数学还不错(数学分析考的不错,满绩)。

于是,我没有任何纠结,找了两个同样有兴趣的同学,参加了学校五月份的建模校赛

(当然第一次参赛的结果那是相当惨烈,但无论如何,我的大学建模之旅就此开始。)


每一个入坑数学建模的人,各有各的理由与想法:或是一时兴起,或是想提高能力,又或是出于功利的目的。

每一个纠结要不要入坑数学建模的人,理由似乎出奇的一致,我总结为以下三点:

  1. 我数学不好能去建模吗?
  2. 我才大一,我还小,我现在去岂不是只能当分母?
  3. 建模太难了,我能学会吗?

但是,无论如何,有一些客观的事实务必要与各位小白交代清楚。

1.数学好不好和数学建模搞不搞的好是完完全全两回事!况且很多人所谓的数学好只是分数考得高而已,而数学建模考察的是你的综合能力,并非你的应试能力。

2. 这个理由很不应该了。诚然,低年级的知识储备和各项能力确实与高年级的同学没法比。但事实确实这样子的:很多人觉得低年级开始搞比赛太早了自己“啥也不会”等学完一年的课再去也不迟,但当他们升到高年级仍然发现:面对赛题依然“啥也不会”。其实,不论是建模还是其他很多竞赛,学没学和你做不做的好没啥联系——本科课上教的内容都太浅了,根本不够你比赛的时候用的,现学现用的能力才是最重要的。不妨趁着大一有时间,多去积累积累经验,走一遍流程都是很好的,如果你不去尝试,到头来将没有任何结果。

3. 建模说难也难,说不难也不难。树立起科学的“建模观与方法论”是第一步,更重要的是全身心的投入。

4. 曾几何时,数学建模似乎不再是一种课外的、兴趣使然的活动,而是逐渐成了一种“无形且必要的附加分”。社会越来越卷了,大学越来越卷了,就连数学建模比赛也越来越卷了。卷到底是不是一件好事我不得而知,但是它所导致的现象却是不争的事实:大家越来越累,好好相处越来越难。后来我才意识到,数学建模得奖了可以保研加分啊!一加还加好多啊!我总觉得竞赛已经失去了原本的味道,但是没办法啊,中国学生就是需要各种各样的奖啊,就是需要参加社团当学生干部啊。一个能够证明我观点的事实是:美国大学生数学建模竞赛中超过98%的参赛队来自中国(你细品)。

2.《碰壁篇》——建模是不可能建出来的。

在上一篇的部分,我讲述了我入坑建模的理由,以及我对入坑建模的相关看法。决定入坑是建模之旅的第一步,这条路并不平坦,波折很多,付出而没有回报是常有的事情。如果你无法接受以上事实,建议更要参加,建模说不定可以帮你调整心态。毕竟,人生很长,困难很多,有很多怪要打,如果连眼前建模失败的失落都无法承受,未来那么长的路又该怎么办呢?

我第一次建模的经历可谓惨烈无比。

首先折磨我的是读也读不懂的题目。数学建模的题目往往很长,有时候比较难理解。因此,才比赛中,认真细致的审题是关键,你必须知道题目到底想让你干什么

接着让我抓狂的是数据咋找也找不到。我记得但是的题目要建立一个能够刻画、解决北京立交桥堵车问题的模型,因此,找到立交桥的车流量数据非常重要。找数据并没有什么特别好的办法,除了一些常规的数据之外,更多的取决于你们的信息检索与资料搜索能力如何了,当然,耐心和细心也很重要。但是很遗憾,当时的我们既没有耐心,也很不细心,而且找资料的能力比较差,到头来啥都没找到。

数据找不到,模型建出来了也用不了。(当然,我们也从知网上找到了几个相关的模型,但是不知道怎么用,不知道怎么改编,外加数据找不到,就没怎么建)

两天后,三个人感觉都无望,打了退党鼓,第一次比赛连一篇完成了论文成果都没有,就这么结束了。就像是一段十分失败的感情:开始轰轰烈烈,中间逐渐冷淡,最后不了了之。

这次比赛很失败,因为他改变了我对数学建模的认知,并且让我怀疑自己的能力:我在功课上明明学的不错呀,为啥建不来模型呢?也正是这次糟糕的经历,给了我很多的启示,让我日后在课程学习与参加其他竞赛时都很受用。

3.《成长篇》——偶然的发现、突然的醒悟!

那么,从第一次的经历中,我学到了什么呢?我总结为以下3点:

  1. 不打无准备之仗。在建模前要做好充足的准备,首先要了解比赛的流程与规则,其次要去学习一些必要的建模软件、掌握一些常规的模型与算法,最后就是要找好队友,分工明确。
  2. 既来之,则安之。自己的模型就要由自己来建好,不要轻言放弃。放弃这个词的杀伤力可太大了,这是一种消极的态度。放弃,意味着不可能会取得成绩。而且,一个在建模比赛中就轻言放弃的人,大概率也会放弃其他的事情,这就是所谓的不靠谱。所以,如果你打算入坑建模,就一定要逼迫自己在比赛结束之前交上一件完整的作品。
  3. 找队友要精心,选对人很重要。第一次建模时,我找队友没想那么多,就是都有兴趣而已。但是这中做法是非理性的,也是不合理的。建模的队伍由三个人组成,一般划分为三个岗位:建模岗、编程岗和论文岗。这个岗位划分是有其内在逻辑的:在比赛中,首先要通过模型与假设对问题都一个理论性的分析与解答,然后通过编程软件将模型进行应用,得出结果后,再通过论文的形式将成果进行包装,最终呈现出一个完整的作品。

反思之后,我首先找到了合适的队友,然后在大一的暑假期间进行准备。前期的准备中,我也遇到了各种各样的问题,走了很多弯路,最后误打误撞地走上了正轨。这个过程中,我觉得最容易走弯路。下面我想从模型、编程、论文三个方面以此介绍

3.1 模型:找对资源,明确导向

我想相信大部分小白在学习模型的过程中,都有这样的经历(至少我周围的同学和我都遇到过):

  • 第一步:从淘宝上买建模教材
  • 第二步:翻开第一章,开始逐字逐句地认真“学习”,先学模型的历史发展,再学模型的理论原理
  • 第三步:哎呀,这个原理看不懂啊,我再换一章看看
  • 第四步:换到新的一章,开始逐字逐句地认真“学习”,先学模型的历史发展,再学模型的理论原理
  • 第五步:这什么玩意,看不懂,学不会,不学了

当你不断重复以上经历,OK,那么你从入坑到退坑估计就不远了吧。究其原因,是当时的我们没有形成一套科学的“建模观与方法论”。

首先说学习模型的方式,不外乎三种,从学习效率上来说依次为:找个建模高手手把手取经→在网上学习视频课程→购买实体教材自学。对于第一个方式,它在现实中是很难实现的,一是我们不容易辨别一个人到底是不是建模高手,二是即便找到了人家愿不愿意教。对于第二个与第三个方式,基于效率与效果考虑,我倾向于第二个。

当我把姜起源老师的《数学建模(第五版)》翻来翻去,到头来一点没看进去的时候,我意识到自己看书并不是一个好办法。效率低不说,关键是碰到看不懂的地方,没有人给你答疑。

就在我怀疑人生的时候,我果断去B站(以前就听不少人说B站是一个爱学习的网站)搜了一搜,结果真的捡到了宝!

在对比了很多数学建模的网络培训课程,在这里我要强烈推荐两个课程资源:

一是清风老师的数模系列课程
清风老师的数学建模数学交流
二是科研交流的数模公开课程
在这里插入图片描述
这两个课程推荐给各位小白们,他们帮我少走了很多弯路,让我真正理解了数学建模比赛究竟是怎么回事。

在学习建模的过程中,我比较赞成的是以应用作为学习导向,也就是会用模型解决问题。例如,在学习灰色预测模型时,我们应侧重于掌握以下两个方面:

  • 灰色预测模型的应用场景(它是用来做什么的,在什么时候需要使用)?
  • 如何进行灰色预测?(可以用SPSSAU点击操作,或者用MATLAB编程处理)

我们不必深究模型原理细节,而是要熟练掌握模型的应用场景与技术手段。

3.2 编程:君子性非异也善假于物也

编程是数学建模中重要环节之一。我对于编程的观点是,能用操作式软件(如Excel,SPSS等)解决的不要自己编程,如果一定要编程的,先去寻找是否有现成的开源代码,如果以上都没有,那么才去自己编程。

软件也好、各种编程语言也好,它们只是解决问题的手段,而非目的,只要能顺利应用模型,那就是好办法。我认识很多同学,他们自认为学了点东西,希望独立自主地完成编写花里胡哨的代码求解模型。其实,如果水平真的达到这个层次,自然是可行的,但是绝大部分同学达不到这个水平,因此,善于利用身边的资源来提高模型求解效率,远比自己研究半天,从零开始要高效很多。

3.3 论文:文笔排版好,一美遮百丑

建模的过程,以及应用的结果,最终是通过文字的方式呈现给评委的。很多队伍模型本身建立的很好,计算结果也准确合理,但是他们却没有用文字清楚地表达建模的过程,也没有准确地描述应用结果,最终只能吃哑巴亏了。

建模论文是一种学术类的论文,需要严谨的叙述与清晰的表达,否则很难推广与传递所要表达的成果与思想。

另外,排版也是评委看中的部分之一。虽然近年来评阅的标准越来越客观而规范,但是不可质疑的是排版在评阅过程中所发挥的重要作用。毕竟人要衣裳马要鞍嘛。

当然,会有人纠结到底要不要学习LATEX进行文档的排版。首先,从学习成本上来说,LATEX成本较高且难度较大,用的好自然没有任何问题,如果学的一知半解,那么到实际比赛中并不能发挥任何作用,反而会拖后腿;再次,从替代性上来说,Word作为大家日常使用的工具,容易上手,但需要多加练习才能从“写字板”进化为“文字编排工具”,把Word用到极致并不容易,但肯定比你画时间学LATEX简单;最后,我仍然要重复这样一个观点,即无论是LATEX还是Word都是写论文的工具,而非目的,最重要的是你形成的文字内容。

《相伴篇》——建模好队友,一生好朋友!

所谓“天时地利人和”、所谓“不怕神一样的对手,就怕猪一样的队友”,找一个好队友对于建模比赛来说尤为重要。笔者本人是经管类专业的,偏文,文笔比较好,因此在选择队友的时候,我着重考虑对方的建模能力与编程能力。我们队伍的构成为“一个经管类专业+两个理工科专业”,自认为比较合理,且确实配合的很好。

在选择队友时,除了看中他的专业能力之外,还需要格外关注他们的“人品”。能力不够可以后天弥补,如果他与自己志不同、道不合,没有强烈的敢拼想赢的想法,那问题可就大了。

此外,没有特殊原因,建议队友可以稳定下来。笔者一直以原班人马参加了大大小小五次建模比赛,每一次比赛后,队友们之间更加有默契,也逐渐认识到自己的不足并加以改正,于是乎比赛结果一次比一次好。

建模的队友相信一定会是你一生的朋友,毕竟共同奋斗、共同刷夜的那段时光是那么的珍贵。

《干货篇》——愿你少走弯路,多取得些成绩

以上说了这么多,我们进行一个简短的总结。我不打算说一些高深的算法模型,不打算讲一些软件操作,更多地是想给大家一个较为合理的发展框架,帮助大家少走弯路。

  1. 敢于尝试,不惧坎坷。
  2. 模型学习,重在应用。
  3. 模型求解,善假于物。
  4. 队友选择,志同道合。
  5. 建模不易,且行且惜。
  6. 坚持到底,就是胜利。

《废话篇》——聊一聊大学

好吧,我是一个喜欢多说两句的人。大学生活已过5/8,虽然不是说自己本科期间活的有多明白,但是总得来说,也有不少的感悟。

课堂上的知识是远远不够的,而更加深刻的内容又是没人教的。众所周知,本科生的记忆只有一场期末考试。考完了,全忘了,等于没有学过。既然,知识迟早会忘却,那么不妨学习一种能力,即自学。在这个日新月异的时代,社会不等我们成长,适者生存,有能力就吃这口饭,没能力就甘做打工人。学会如何学习,比忙着应付考试重要的多。

在大学,一个好学生,应该是怎样的呢?或者说我们应该如何评价一个学生?不必说,一个成绩名列前茅、学生工作丰富、竞赛科研突出、积极参与志愿的学生确实是一个好学生,但是是否所有的好学生都是这样呢?人们正呼吁着的教育回归本真,而真正到评价一个学生的时候,又不由自主地回到了“成绩+科研+竞赛+社团+志愿”的原点。这样的结果,归根结底是社会评价体系所造成的,是人们难以改变的观念所造成的。

如果无法改变,那就去适应它!一个无法把自己不喜欢的事情做到极致的人,是不配拥有做自己真正喜欢的事情的权利的。

  • 28
    点赞
  • 72
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值