解法1:栈(一次遍历)
- stk存储比当前高度更低或相等的高度
- cur代表当前高度之前的最低点(stk.pop)
- cur高度上储水量为cur*min(stk.top,height[i])
- 判断是否会在边上,留不住水(cur,stk.empty())
- stk.empty(),入栈
class Solution {
public:
int trap(vector<int>& height) {
int i,j,t,h,sum=0,cur;
stack<int> stk;//储存水池高度序号
for(i=0;i<height.size();i++){
if(!stk.empty()){
while(height[stk.top()]<height[i]){
cur=height[stk.top()];
stk.pop();
if(stk.empty()){
break;
}
h=height[stk.top()]<height[i]?height[stk.top()]:height[i];
sum+=(h-cur)*(i-stk.top()-1);
}
}
stk.push(i);
}
return sum;
}
};
解法2:动态编程(3n)
分别遍历得到每个位置上从左算和从右算的储水高度(最小),与本身高度做比较求和
int trap(vector<int>& height)
{
if(height == null)
return 0;
int ans = 0;
int size = height.size();
vector<int> left_max(size), right_max(size);
left_max[0] = height[0];
for (int i = 1; i < size; i++) {
left_max[i] = max(height[i], left_max[i - 1]);
}
right_max[size - 1] = height[size - 1];
for (int i = size - 2; i >= 0; i--) {
right_max[i] = max(height[i], right_max[i + 1]);
}
for (int i = 1; i < size - 1; i++) {
ans += min(left_max[i], right_max[i]) - height[i];
}
return ans;
}